4,641 research outputs found
On the shape of barchan dunes
Barchans are crescent-shaped sand dunes forming in aride regions with
unidirectional wind and limited sand supply. We report analytical and numerical
results for dune shapes under different environmental conditions as obtained
from the so-called `minimal model' of aeolian sand dunes. The profiles of
longitudinal vertical slices (i.e. along the wind direction) are analyzed as a
function of wind speed and sand supply. Shape transitions can be induced by
changes of mass, wind speed and sand supply. Within a minimal extension of the
model to the transverse direction the scale-invariant profile of transverse
vertical cuts can be derived analytically.Comment: to appear in J. Phys.: Condens. Matter 17 (2005
Возникновение и развитие еврейской прессы Крыма
В статье выделяются основные этапы процесса возникновения и развития еврейской прессы Крыма, вводится в научный оборот ряд еврейских изданий.У статті виділяються основні етапи процесу виникнення і розвитку єврейської преси Криму, вводиться в науковий обіг ряд єврейських видань.The article researches the Jewish Crimean mass-media
Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument
Subsurface drainage systems are commonly used to remove surplus water from the soil profile of a poorly drained farmland. Traditional methods for drainage mapping involve the use of tile probes and trenching equipment that are time-consuming, labor-intensive, and invasive, thereby entailing an inherent risk of damaging the drainpipes. Effective and efficient methods are needed in order to map the buried drain lines: (1) to comprehend the processes of leaching and offsite release of nutrients and pesticides and (2) for the installation of a new set of drain lines between the old ones to enhance the soil water removal. Non-invasive geophysical soil sensors provide a potential alternative solution. Previous research has mainly showcased the use of time-domain ground penetrating radar, with variable success, depending on local soil and hydrological conditions and the central frequency of the specific equipment used. The objectives of this study were: (1) to test the use of a stepped-frequency continuous wave three-dimensional ground penetrating radar (3D-GPR) with a wide antenna array for subsurface drainage mapping and (2) to evaluate its performance with the use of a single-frequency multi-receiver electromagnetic induction (EMI) sensor in-combination. This sensor combination was evaluated on twelve different study sites with various soil types with textures ranging from sand to clay till. While the 3D-GPR showed a high success rate in finding the drainpipes at five sites (sandy, sandy loam, loamy sand, and organic topsoils), the results at the other seven sites were less successful due to the limited penetration depth of the 3D-GPR signal. The results suggest that the electrical conductivity estimates produced by the inversion of apparent electrical conductivity data measured by the EMI sensor could be a useful proxy for explaining the success achieved by the 3D-GPR in finding the drain lines
Mapping subsurface drainage in agricultural areas using a frequency-domain ground penetrating radar
Artificial subsurface drainage systems are installed in agricultural areas to remove excess water and convert poorly naturally drained soils into productive cropland. Some of the most productive agricultural regions in the world are a result of subsurface drainage practices. Drain lines provide a shortened pathway for the release of nutrients and pesticides into the environment, which presents a potentially increased risk for eutrophication and contamination of surface water bodies. Knowledge of drain line locations is often lacking. This complicates the understanding of the local hydrology and solute dynamics and the consequent planning of mitigation strategies such as constructed wetlands, saturated buffers, bioreactors, and nitrate and phosphate filters. In addition, accurate knowledge of the existing subsurface drainage system is required in designing the installation of a new set of drain lines to enhance soil water removal efficiency. The traditional methods of drainage mapping involve the use of tile probes and trenching equipment which are time-consuming, tiresome, and invasive, thereby carrying an inherent risk of damaging the drain pipes. Non-invasive geophysical sensors provide a potential alternative solution to the problem. Previous research has focused on the use of time-domain ground penetrating radar (GPR) with variable success depending on local soil and hydrological conditions and the center frequency of the specific equipment used. For example, 250 MHz antennas proved to be more suitable for drain line mapping. Recent technological advancements enabled the collection of high-resolution spatially exhaustive data. In this study, we present the use of a stepped-frequency continuous wave (SFCW) 3D-GPR (GeoScope Mk IV 3D-Radar with DXG1820 antenna array) mounted in a motorized survey configuration with real-time georeferencing for subsurface drainage mapping. The 3D-GPR system offers more flexibility for application to different (sub)surface conditions due to the coverage of wide frequency bandwidth (60-3000 MHz). In addition, the wide array swathe of the antenna array (1.5 m covered by 20 measurement channels) enables effective coverage of three-dimensional (3D) space. The surveys were performed on twelve different study sites with various soil types with textures ranging from sand to clay till. While we achieved good success in finding the drainage pipes at five sites with sandy, sandy loam, loamy sand and organic topsoils, the results at the other seven sites with more clay-rich soils were less successful. The high attenuation of electromagnetic waves in highly conductive clay-rich soils, which limits the penetration depth of the 3D-GPR system, can explain our findings obtained in this research
Risk factors of visceral leishmaniasis in East Africa: a case-control study in Pokot territory of Kenya and Uganda
BACKGROUND: In East Africa, visceral leishmaniasis (VL) is endemic in parts of Sudan, Ethiopia, Somalia, Kenya and Uganda. It is caused by Leishmania donovani and transmitted by the sandfly vector Phlebotomus martini. In the Pokot focus, reaching from western Kenya into eastern Uganda, formulation of a prevention strategy has been hindered by the lack of knowledge on VL risk factors as well as by lack of support from health sector donors. The present study was conducted to establish the necessary evidence-base and to stimulate interest in supporting the control of this neglected tropical disease in Uganda and Kenya. METHODS: A case-control study was carried out from June to December 2006. Cases were recruited at Amudat hospital, Nakapiripirit district, Uganda, after clinical and parasitological confirmation of symptomatic VL infection. Controls were individuals that tested negative using a rK39 antigen-based dipstick, which were recruited at random from the same communities as the cases. Data were analysed using conditional logistic regression. RESULTS: Ninety-three cases and 226 controls were recruited into the study. Multivariate analysis identified low socio-economic status and treating livestock with insecticide as risk factors for VL. Sleeping near animals, owning a mosquito net and knowing about VL symptoms were associated with a reduced risk of VL. CONCLUSIONS: VL affects the poorest of the poor of the Pokot tribe. Distribution of insecticide-treated mosquito nets combined with dissemination of culturally appropriate behaviour-change education is likely to be an effective prevention strategy
- …