2,554 research outputs found

    A flexible flight display research system using a ground-based interactive graphics terminal

    Get PDF
    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed

    Book Reviews

    Get PDF

    Bandgap and effective mass of epitaxial cadmium oxide

    Get PDF
    The bandgap and band-edge effective mass of single crystal cadmium oxide, epitaxially grown by metal-organic vapor-phase epitaxy, are determined from infrared reflectivity, ultraviolet/visible absorption, and Hall effect measurements. Analysis and simulation of the optical data, including effects of band nonparabolicity, Moss-Burstein band filling and bandgap renormalization, reveal room temperature bandgap and band-edge effective mass values of 2.16±0.02 eV and 0.21±0.01m0 respectively

    Applying Model-based Diagnosis to a Rapid Propellant Loading System

    Get PDF
    The overall objective of the US Air Force Research Laboratory (AFRL) Rapid Propellant Loading (RPL) Program is to develop a launch vehicle, payload and ground support equipment that can support a rapid propellant load and launch within one hour. NASA Kennedy Space Center (KSC) has been funded by AFRL to develop hardware and software to demonstrate this capability. The key features of the software would be the ability to recognize and adapt to failures in the physical hardware components, advise operators of equipment faults and workarounds, and put the system in a safe configuration if unable to fly. In December 2008 NASA KSC and NASA Ames Research Center (ARC) demonstrated model based simulation and diagnosis capabilities for a scaled-down configuration of the RPL hardware. In this paper we present a description of the model-based technologies that were included as part of this demonstration and the results that were achieved. In continuation of this work we are currently testing the technologies on a simulation of the complete RPL system. Later in the year, when the RPL hardware is ready, we will be integrating these technologies with the real-time operation of the system to provide live state estimates. In future years we will be developing the capability to recover from faulty conditions via redundancy and reconfiguration

    Carbon Dioxide Dynamics During a Growing Season in Midwestern Cropping Systems

    Get PDF
    Daily and seasonal CO2-exchange dynamics between the boundary layer and biosphere is important to understanding Net Ecosystem Exchange of terrestrial ecosystems. Spatial and temporal variations of CO2 fluxes across midwestern cropping systems have not been well documented. This study was designed to monitor and evaluate spatial and temporal dynamics of CO2 exchange across a watershed region for typical production fields of corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] in the Midwest by quantifying the above-canopy, within-canopy, and soil components of C balance for this cropping system. An energy-balance approach using eddy covariance was utilized across different fields making year-around measurements in both corn and soybean fields to quantify the exchange of CO2 and H2O between the crop canopy and the atmospheric boundary layer. Within-canopy concentrations of CO2 and H2O vapor were measured with an eight-port CO2/H2O infrared analyzer. Soil respiration was quantified using soil chambers at various landscape positions throughout the growing season. Fluxes of CO2 and H2O vapor throughout the day were dependent on net radiation and the stage of canopy development. Diurnal variations in CO2 and H2O vapor fluxes revealed that the magnitude of the fluxes is large and the variation of the fluxes among fields was consistent throughout the season. Integration of the daily fluxes into seasonal totals showed large differences among crops and fields. Flux differences were the result of the effect of varying soil types on water-holding capacity. Seasonal integrated values were lower than estimates derived from biomass samples collected within the fields and the measurement of the C content of the biomass. Within-canopy recycling of soil CO2 may provide insight to this discrepancy. The techniques are available to quantify the CO2 and H2O vapor fluxes across different management systems and landscapes to help refine our understanding of the magnitude of the CO2 and H2O dynamics in cropping systems

    Mineral sinks within ripening grape berries (Vitis vinifera L.)

    Get PDF
    Trends in the accumulation of mineral elements into the grape berry components give information about vascular flow into the berry. Shiraz berries were dissected into receptacle, skin, pulp, brush and seeds and the accumulation of 10 mineral elements into these components was followed through development. The elements were separated into two categories according to their accumulation pattern into the berry. The first group of elements continued to accumulate throughout berry growth and ripening, and was comprised of  phloem-mobile potassium, phosphorus, sulphur, magnesium, boron, iron and copper. The second group of elements accumulated mostly prior to veraison, and included the xylem-mobile minerals calcium, manganese and zinc. These results indicate that the xylem contribution to berry growth diminished after veraison. Berry fresh weight, dry weight, as well as berry sugar content, were all highly correlated with berry potassium content. While the pulp and skin were the strongest sinks for potassium and boron, seeds were the strongest sinks for calcium, phosphorus, sulphur, manganese and zinc. With the exception of calcium and manganese, seeds ceased to accumulate most elements during late ripening. The berry receptacle and brush did not accumulate any of the elements to levels above those of the other berry components at any stage of development. Therefore, they did not act as sinks for xylem- or phloem-mobile elements as vascular flow to the pulp and skin slowed.

    Climate Impacts on Agriculture: Implications for Forage and Rangeland Production

    Get PDF
    Projections of temperature and precipitation patterns across the United States during the next 50 yr anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change effects on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on responses of pastureland and rangeland species to rising atmospheric CO2 and climate change (temperature and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pastureland and rangeland species to increased [CO2] is consistent with the general responses of C3 and C4 vegetation, although exceptions exist. Both pastureland and rangeland species may experience accelerated metabolism and advanced development with rising temperature, often resulting in a longer growing season. However, soil resources will often constrain temperature effects. In general, it is expected that increases in [CO2] and precipitation will enhance rangeland net primary production (NPP) whereas increased air temperatures will either increase or decrease NPP. Much of the uncertainty in predicting how pastureland and rangeland species will respond to climate change is due to uncertainty in future projections of precipitation, both globally and regionally. This review reveals the need for comprehensive studies of climate change impacts on pastureland and rangeland ecosystems that include an assessment of the mediating effects of grazing regimes and mutualistic relationships (e.g., plant roots-nematodes; N-fixing organisms) as well as changes in water, carbon, and nutrient cycling
    • …
    corecore