2,238 research outputs found

    Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair-transistor

    Full text link
    We present radio-frequency measurements on a single-Cooper-pair-transistor in which individual quasiparticle poisoning events were observed with microsecond temporal resolution. Thermal activation of the quasiparticle dynamics is investigated, and consequently, we are able to determine energetics of the poisoning and un-poisoning processes. In particular, we are able to assign an effective quasiparticle temperature to parameterize the poisoning rate.Comment: 4 pages, 4 fig

    Development and operation of the twin radio frequency single electron transistor for solid state qubit readout

    Full text link
    Ultra-sensitive detectors and readout devices based on the radio frequency single electron transistor (rf-SET) combine near quantum-limited sensitivity with fast operation. Here we describe a twin rf-SET detector that uses two superconducting rf-SETs to perform fast, real-time cross-correlated measurements in order to distinguish sub-electron signals from charge noise on microsecond time-scales. The twin rf-SET makes use of two tuned resonance circuits to simultaneously and independently address both rf-SETs using wavelength division multiplexing (WDM) and a single cryogenic amplifier. We focus on the operation of the twin rf-SET as a charge detector and evaluate the cross-talk between the two resonance circuits. Real time suppression of charge noise is demonstrated by cross correlating the signals from the two rf-SETs. For the case of simultaneous operation, the rf-SETs had charge sensitivities of δqSET1=7.5μe/Hz\delta q_{SET1} = 7.5 \mu e/\sqrt{Hz} and δqSET2=4.4μe/Hz\delta q_{SET2} = 4.4 \mu e/\sqrt{Hz}.Comment: Updated version, including new content. Comments most welcome: [email protected] or [email protected]

    SQUID-based rock magnetometer with open-ended horizontal room-temperature access

    Full text link

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    Get PDF
    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans

    A Measurement of the Electric Form Factor of the Neutron through d(e,en)p\vec{d}(\vec{e},e'n)p at Q2=0.5Q^2 = 0.5 (GeV/c)2^2

    Full text link
    We report the first measurement of the neutron electric form factor GEnG_E^n via d(e,en)p\vec{d}(\vec{e},e'n)p using a solid polarized target. GEnG_E^n was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, 15^{15}ND3_3. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find GEn=0.04632±0.00616(stat.)±0.00341(syst.)G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.) at Q2=0.495Q^2 = 0.495 (GeV/c)2^2.Comment: Latex2e 5 pages, 3 figure

    Phi^{zero}-N Bound State

    Full text link
    We show that the QCD van der Waals attractive potential is strong enough to bind a ϕ0\phi^{0} meson onto a nucleon inside a nucleus to form a bound state. The direct experimental signature for such an exotic state is proposed in the case of subthreshold ϕ0\phi^{0} meson photoproduction from nuclear targets. The production rate is estimated and such an experiment is found to be feasible at the Jefferson Laboratory.Comment: 4 pages, 2 figure
    corecore