137 research outputs found

    Power-free water pump based on a superhydrophobic surface: generation of a mushroom-like jet and anti-gravity long-distance transport

    Get PDF
    Spontaneous anti-gravitational transportation of liquids across long distances has been widely discovered in nature, such as water transportation from the root to the crown of a tree. However, artificial liquid delivery remains a challenge. In this work, a new power-free pump composed of a superhydrophobic plate with a pore mounted on a leak-proof cylindrical container filled with water is presented for sustained anti-gravity and long distance transport. Water droplets can be spontaneously captured through the pore by the lower water column, forming a mushroom-like jet due to the energy transition from surface energy to kinetic energy. The spontaneously increased inside pressure in the container will push the water out, through another thin tube, realizing the energy transition from surface energy to gravitational potential energy. The dynamic driving and moving model of the pivotal mushroom-like jet were analyzed. The maximum transport height and transport abilities of the water pump were also discussed. The results show that Laplace pressure is the main driving pressure of the mushroom-like jet and that the developed power-free pump can effectively transport water to over 100 mm in height with an average transport speed of 4500 μL h−1, showing potential for application in microfluidic systems and medical devices where micropumps are needed

    Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures

    Get PDF
    Artificial self-healing superhydrophobic surfaces have become a new research hotspot because of their recoverable non-wetting performance and practical perspective. In this paper, a superhydrophobic surface was fabricated by aerosol-assisted layer-by-layer chemical vapor deposition (AA-LbL-CVD) of epoxy resins and PDMS polymer films. The obtained samples still showed superhydrophobicity even after long-term exposure to different pH solutions and UV light irradiation as well as great mechanical stability against sandpaper abrasion and double-sided tape peeling. Importantly, due to the shape memory effect of the polymer films, the as-prepared samples could recover the previously crushed micro–nano structures upon heat treatment to make the surface superhydrophobic, showing thermo-triggered healing of superhydrophobicity

    Reactivity of vanadium oxytrichloride with [beta]-diketones and diesters as precursors for vanadium nitride and carbide

    Get PDF
    Vanadium(V) oxytrichloride was reacted with 2,4-pentanedione, diethyl malonate, and diethyl succinate under inert conditions, forming compounds: dichloro(oxo)(2,4-pentanedione) vanadium(V) [1], dichloro(oxo)(diethyl malonate) vanadium(IV) [2] and dichloro(oxo)(diethyl succinate) vanadium(IV) [3]. Compounds 1–3 are coordinated to the vanadium centre through the two carbonyl oxygen atoms of the bidentate ligand. It was determined by X-ray crystallography that the structures of the resulting complexes were significantly different, resulting in a monomeric complex (1), a tetrameric ring (2) and a 1D coordination polymer (3). Following the synthesis and isolation of 1–3, they were tested as precursors for vanadium nitride and vanadium carbide by annealing under nitrogen and argon respectively at 1200 °C for 24 h. The resulting materials were characterised by: XRD, EDS, XPS and TEM

    Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing

    Get PDF
    Superhydrophobic conical pillars have great industrial application potential in, for example, anti-icing of aircraft wings and protecting high voltage transmission lines from freezing rain because of their droplet pancake bouncing phenomenon, which is recognized to further reduce the liquid-solid contact time. However, there are still no methods that can fabricate robust superhydrophobic conical pillars in large scale. Here, a mold replication technology was proposed to realize the large-scale fabrication of superhydrophobic conical pillars with high mechanical strength. An Al mold with intensive conical holes decorated with micro/nanometer-scale structures was fabricated by nanosecond laser drilling and HCl etching. The conical shape originated from a near Gaussian spatial distribution of the energy and temperature in the radial direction in the laser drilling processes. Robust superhydrophobic conical pillars from syringe needle shape to straight conical pillar shape were easily fabricated through replication from the Al mold without any extra spray of superhydrophobic nanoparticles. It was also found that although all superhydrophobic conical pillars with different shapes could generate the droplet pancake bouncing, the shape had a great influence on the critical bottom space and the critical Weber number (We) to generate pancake bouncing. The pancake bouncing with the shortest contact time of a 68.5% reduction appeared on superhydrophobic straight conical pillars with the shape angle of 180°. Overcoming the difficulties in the large-scale fabrication and robustness of superhydrophobic conical pillars will promote practical applications of the droplet pancake bouncing phenomenon

    Robust platform for water harvesting and directional transport

    Get PDF
    Water harvesting is used for transforming moisture into available water resources in regions that suffer water scarcity. However, it remains a considerable challenge to design a system that functions to both collect water from the air and transport it to a certain region over a long distance. In this work, a new water harvesting platform for dropwise condensation and dropwise transportation is developed to realize both water collection and spontaneously directional transport over long-distance at low temperatures. The water harvesting platform was developed based on a biomimetic slippery liquid-infused porous surface (SLIPS) with micron-size steps and nano-sized holes through electrochemical etching, electrochemical anodizing, low surface energy modification and lubricant infusion. The anti-wetting, chemical resistance, condensation and anti-icing properties of the water harvesting platform at different pHs and temperatures were tested to show the stability of the system. The water harvesting platform exhibited excellent dropwise condensation capacity, and can directly and continuously capture moisture from the air in a low-temperature environment. Spontaneously directional transport of droplets was achieved on a choreographed wedged-platform driven by Laplace pressure, and the transport distance was unlimited due to the energy conversion from surface energy to kinetic energy induced by droplets coalescing in a repeated motion of droplet merging and chasing. This water harvesting platform shows great potential in applications for advanced transportation devices, multifunctional sensors, actuators, and is a promising potential solution to water scarcity

    Multi-scale Investigations of δ-Ni0.25V2O5.nH2O Cathode Materials in Aqueous Zinc-ion Batteries

    Get PDF
    Cost-effective and environmentally friendly aqueous zinc-ion batteries (AZIB) exhibit tremendous potential for application in grid-scale energy storage systems but are limited by suitable cathode materials. Hydrated vanadium bronzes have gained significant attention for AZIBs and can be produced with a range of different pre-intercalated ions, allowing their properties to be optimised. However, gaining a detailed understanding of the energy storage mechanisms within these cathode materials remains a great challenge due to their complex crystallographic frameworks, limiting rational design from the perspective of enhanced Zn2+ diffusion over multiple length scales. Herein, we report on a new class of hydrated porous δ-Ni0.25V2O5.nH2O nanoribbons for use as an AZIB cathode. The cathode delivers reversibility showing 402 mAh g-1 at 0.2 A g-1 and a capacity retention of 98 % over 1200 cycles at 5 A g-1. A detailed investigation using experimental and computational approaches reveal that the host ‘δ’ vanadate lattice has favourable Zn2+ diffusion properties, arising from the atomic-level structure of the well-defined lattice channels. Furthermore, the microstructure of the asprepared cathodes is examined using multi-length scale X-ray computed tomography for the first time in AZIBs and the effective diffusion coefficient is obtained by image-based modelling, illustrating favourable porosity and satisfactory tortuosity

    Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

    Get PDF
    Low-cost, layered transition-metal dichalcogenides (MX_2) based on molybdenum and tungsten have attracted substantial interest as alternative catalysts for the hydrogen evolution reaction (HER). These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges. Here we unravel electronic factors underlying catalytic activity on MX_2 surfaces, and leverage the understanding to report group-5 MX_2 (H-TaS_2 and H-NbS_2) electrocatalysts whose performance instead mainly derives from highly active basal-plane sites, as suggested by our first-principles calculations and performance comparisons with edge-active counterparts. Beyond high catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds, offering a practical advantage for scalable processing. The catalysts reach 10 mA cm^(−2) current density at an overpotential of ∼50–60 mV with a loading of 10–55 μg cm^(−2), surpassing other reported MX2 candidates without any performance-enhancing additives
    • …
    corecore