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* The synthesis of vanadium compounds
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GRAPHICAL ABSTRACT

ABSTRACT

Vanadium(V) oxytrichloride was reacted with 2,4-pentanedione, diethyl malonate, and diethyl succinate under
inert conditions, forming compounds: dichloro(oxo)(2,4-pentanedione) vanadium(V) [1], dichloro(oxo)(diethyl
malonate) vanadium(IV) [2] and dichloro(oxo)(diethyl succinate) vanadium(IV) [3]. Compounds 1-3 are coor-
dinated to the vanadium centre through the two carbonyl oxygen atoms of the bidentate ligand. It was deter-
mined by X-ray crystallography that the structures of the resulting complexes were significantly different,
resulting in a monomeric complex (1), a tetrameric ring (2) and a 1D coordination polymer (3). Following the
synthesis and isolation of 1-3, they were tested as precursors for vanadium nitride and vanadium carbide by an-
nealing under nitrogen and argon respectively at 1200 °C for 24 h. The resulting materials were characterised by:

XRD, EDS, XPS and TEM.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Vanadium nitride (VN) and vanadium carbide (VC) are the subject of
investigation for materials scientists due to their exceptional hardness,
high melting points, high thermal conductivities and solid lubricating
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properties [1-3]. The Vickers hardness of VC has been measured at
2600-3200 kg mm ™2 [4,5], considerably harder than tungsten carbide
[6] and similar to titanjum carbide (2400 kg mm~2 & 1 1900-
3200 kg mm ™~ 2 respectively) [7] as well as a measured Young's modulus
comparable with that of tungsten carbide [5,8,9]. VN exhibits similar
properties, with a Vickers hardness of 1500 kg mm ™2 and high melting
point (2619 K) comparable to VC (3103 K) [1,10].

VN is widely used to harden steel, with a layer of VN created on the
surface of the steel by annealing at high temperatures under a flow of
nitrogen. This increases wear resistance for use in high performance
steels [11,12]. VN is also a strong coupled superconductor, with nano-
crystalline VN having potential use in supercapacitors [13].

VN is often synthesised by controlled direct nitridation using nitro-
gen or ammonia gas at varying temperatures. In this way, foams of VN
were formed through the nitridation of vanadium oxides with ammonia
gas with high control over foam morphology [14]. Other methods in-
clude microwave synthesis [15-17], hydrothermal synthesis [18] and
high temperature plasma routes [19].

VN thin films have been synthesised from molecular precursors such
as NH(SiMes), [20], VCl4 [21,22] and V(NEt,)s with a carrier gas com-
posed of 10% NHs in He using atmospheric pressure chemical vapour
deposition (APCVD) [23]. VN has also been produced from a variety of
molecular precursors including: the direct reaction of vanadium tetra-
chloride with sodium amide [24], vanadium-urea complexes [25,26],
chloroimidovanadium compounds and metal oxide nanoparticles with
cyanamide and urea [27].

VC has been shown to be a highly effective additive to tungsten car-
bide in improving the hardness and thermal conductivity of highly du-
rable ceramic-metal “cermet” composites [28], and an ideal material
for improving the wear resistance of tools [29-33]. Furthermore precip-
itation of vanadium carbide nanoparticles into ferrite-martensite dual
phase steel has been shown to cause a consistent improvement to
Vickers hardness over a range of synthesis conditions [27-29]. It has
been reported that depositing a layer of vanadium carbide onto the sur-
face of high carbon steel via a salt bath has been shown to improve its
surface hardness by six times [34]. A similar report detailed VC coatings
deposited onto a die steel substrate via high temperature reactive diffu-
sion using a NH4Cl/ferro-vanadium/naphthalene precursor, resulting in
surface hardness improved approximately fivefold [35].

Numerous methods for the formation of vanadium carbide nanopar-
ticles exist in the literature. A family of preparations using
vanadium(V) oxide (V,0s) with various carbonaceous species and re-
ducing gaseous environments at high temperatures are widely used
[28,36,37]. Refluxing V,0s5 powder in n-dodecane has been shown to
yield VC nanoparticles after several days [38], as has decomposition of
V,05 with magnesium filings and acetone in an autoclave [28,39-41].
Nanostructured thin films of vanadium carbide have been deposited
using the chemical vapour deposition of single source molecular precur-
sors such as: vanadocene [42], vanadocene dichloride and dimethyl
vanadocene [43] and cyclopentadienyl vanadium tetracarbonyl [44].

We present a range of new molecular species derived from diester
(2,4-pentanedione, diethyl malonate, and diethyl succinate) addition
to VOCI; as single source precursors for vanadium nitride and carbide
formation. The single source precursors presented herein are ideal for
small scale laboratory preparations and applications of VN and VC,
such as the synthesis of thin films, nanoparticles and nanofibres [45].
The chemistries and structures of the aforementioned molecular species
were evaluated using X-ray crystallography (full structure determina-
tion and associated analysis), elemental analysis, 'H and '>C {*H} nucle-
ar magnetic resonance (NMR) spectroscopy. Each of the precursors was
converted to vanadium nitride and vanadium carbide via heating in fur-
nace under an inert atmosphere at 1200 °C, similar temperatures to
those used in the formation of austenitic steel [46,47]. The conversion
to the carbide or nitride was dependent on the carrier gas used, with ni-
trogen giving the nitride and argon the carbide. This demonstrates the
versatility of the single-source precursors presented herein over

multi-source methods, as by changing something as simple as the carri-
er gas, a completely different material is formed. It is also noteworthy
that the vast majority of recent literature on the synthesis of both vana-
dium carbide and nitride focuses on the use of dual source precursors
and complex formation in situ in the reaction vessel [48-53]. Reported
scale-up and industrial scale processes use dual source routes, with va-
nadium pentoxide and carbon under different gaseous conditions for
both vanadium carbide and nitride [54,55]. The use of single source pre-
cursors represents a significant step forward in precursor design for va-
nadium nitride and carbide, and offers potential advantages over dual
source precursors for industrial scale-up as the amount of feedstocks
would multiply, thus increasing costs. This route would also offer a
more convenient synthetic method for lab-scale synthesis of both vana-
dium carbides and nitrides. The conversion to vanadium carbide and ni-
tride was examined by X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and
transmission electron microscopy (TEM).

2. Experimental

All starting materials were purchased from Sigma Aldrich and used
without further purification. The solvents were dried over activated alu-
mina by the Grubbs method using anhydrous engineering equipment,
such that the water concentration was 5-10 ppm [56]. All products
were synthesised under an atmosphere of nitrogen obtained from BOC
in anhydrous solvents using standard Schlenk techniques. 'H and
13C{'H} NMR spectroscopy was carried out on a Bruker A-600 MHz
spectrometer, operating at 295 K and 600.13 MHz (H). Signals are re-
ported relative to SiMe, (6 = 0.00 ppm) and the following abbrevia-
tions are used s (singlet), d (doublet), t (triplet), q (quartet), m
(multiplet), b (broad). Deuterated CDCl3 was obtained from GOSS Sci-
entific and was degassed and dried over 3 A molecular sieves.

2.1. Synthesis of dichloro(oxo)(2,4-pentanedione) vanadium(V) [1]

2,4-Pentanedione (acacH) (0.5 cm? 4.87 mmol) was added
dropwise to VOCl; (2 cm?, 21.1 mmol) in 30 cm® of n-hexane and stirred
under nitrogen for 2 h. A dark precipitate formed immediately, giving
a solution that appeared black. The precipitate was filtered and
washed with n-hexane and dried in vacuo. This afforded the dark
red complex 1 (1.1 g, 75%). Crystals suitable for single crystal X-ray
diffraction were grown by layering a saturated solution of 1 in
dichloromethane with hexane. Large green crystals formed over the
course of 2 days. 'H NMR (CDCl5): 6 2.39 (s, 6H, CHs), 6.13 (s, 1H, CH).
13C {"H} NMR (CDCl5): 6 26.4 (CHs), 105 (CH), 193 (C=0). Elemental
analysis calculated for VO5Cl,CsH5: C, 25.34; H, 2.98. Found: C, 25.80;
H, 3.02.

2.2. Synthesis of dichloro(oxo)(diethyl malonate) vanadium(1V) [2]

Diethyl malonate (0.5 cm?, 3.3 mmol) was added dropwise to VOCI;
(2 cm?, 21.1 mmol) in 50 cm® of hexane and stirred under nitrogen for
2 h. An excess of VOCl; was used to ensure completion as unreacted
VOCl; is facile to remove from the reaction. A very dark precipitate
was formed in a dark red solution. The precipitate was filtered and
washed 3 times with 20 cm® hexane and dried in vacuo to afford 2 in
good yield (0.9 g, 78%). Some of the product was re-dissolved in 5 cm?
dichloromethane and layered with 15 cm® hexane. Small crystals
formed over approximately one week. 'TH NMR (CDCls): & 1.34 (t, 6H,
-CHs, ] = 7.25 Hz, 3.35 (s, 2H, -CH5) ), 4.18 (q, 4H, -CH,, ] = 7.25 Hz).
13C{'H} NMR (CDCl5): & 14.2 (CH3), 55.9 (CH,), 63.6 (CH,CH3), 163
(C=0). Elemental analysis calculated for C;H;,05Cl,V: C, 28.21; H,
4,06. Found: C, 26.38; H, 3.78.
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2.3. Synthesis of dichloro(oxo)(diethyl succinate) vanadium(IV) [3]

Diethyl succinate (0.5 cm?, 3.3 mmol) was added dropwise to VOCl;
(2 cm?,21.1 mmol) in 40 cm? of n-hexane and stirred under nitrogen for
2 h. A dark red solution formed immediately but no precipitate was ob-
served. The product was dried in vacuo leading to the removal of the sol-
vent and VOClI;, leaving a viscous red liquid product (0.8 g, 90%). The
flask containing the liquid product was left on its side for two weeks.
Small green crystals were observed in the flask. "H NMR (CDCl5): &
1.21 (b, 6H, -CH3), 6 2.59 (b, 4H, -CH,CH,), 6 4.12 (b, 4H, -CH,CH3).
13C {'H} NMR (CDCls): 6 14.3 (CHs), 29.2 (CH,CH,), 60.9 (CH,CH3),
173 (C=0). Elemental analysis calculated for CgH1405C,V: C, 30.79; H,
4.52. Found: C, 29.83; H, 4.49.

2.4. Synthesis of vanadium nitride and carbide powders

Vanadium nitride and carbide powders were synthesised by
weighing out ~0.2 g of compounds 1, 2 and 3 in a nitrogen filled
glovebox onto ceramic bricks. The samples were sealed with a layer of
laboratory film before removal from the glovebox. The samples were
then transferred immediately to a tube furnace. The samples were
purged with a flow of nitrogen (for VN, BOC, 99.9%) or argon (for VC,
BOC “pureshield” 99.9%) at room temperature for 30 min (flow rate
40 sccm) before heating to 1200 °C (heating rate 20 °C min~!) for
24 h. The samples were then cooled to room temperature naturally.
Gas flow was maintained throughout.

3. Instrumentation

Transmission electron microscopy (TEM) images were obtained
using a high resolution TEM Jeol 2100 with a LaBg source operating at
an acceleration voltage of 200 kV. Images were recorded on a Gatan
Orius Charge-coupled device (CCD). Samples were prepared by drop-
casting a sonicated dispersion of VN/VC in n-hexane onto a 400 mesh
gold grid with a thin holey carbon film (Agar Scientific). Energy disper-
sive X-ray spectra (EDS) were recorded on an Oxford Instruments XMax
EDS detector running AZTEC software. XRD patterns were carried out
using a Stoe (Mo) StadiP diffractometer with a Mo X-ray source (Mo
tube 50 kV 30 mA), monochromated (Pre-sample Ge (111) monochro-
mator selects Kol only) and a Dectris Mython 1k silicon strip detector
covering 18° 26. Samples were run in transmission mode, with the sam-
ple under rotation in the X-ray beam. All diffraction patterns obtained
were compared with database standards. X-ray photoelectron spectros-
copy was conducted on a Thermo Scientific K-alpha spectrometer with

monochromated Al Ka radiation, a dual beam charge compensation
system and constant pass energy of 50 eV (spot size 400 um). Survey
scans were collected in the binding energy range 0-1200 eV. High-
resolution peaks were used for the principal peaks of V (2p), O (1s),
and C (1s). CASA XPS software was used to fit data, with a doublet sep-
aration of 7.5 eV used for V 2p [57].

4. Crystallography

Single crystal XRD was carried out by selecting a suitable crystal and
mounting it on a nylon loop. The datasets of all three compounds were
collected on a SuperNova, Dual, Cu, Atlas diffractometer. The crystal was
kept at 150(1) K during data collection (with the exception of 2 which
was collected at 77 K). All compounds were solved using Olex2 [58],
the structure was solved with the olex2.solve [59] structure solution
program using Charge Flipping and refined with the ShelXL [60] refine-
ment package using Least Squares minimisation. All structures have
been submitted to the CCDC; compound 1 CCDC 1030431, compound
2 CCDC 1033676, compound 3 CCDC 1033740.

5. Results and discussion

Excess vanadium(V) oxytrichloride was reacted with the bidentate
dicarbonyl ligands; 2,4-pentanedione, diethyl malonate and diethyl
succinate in anhydrous n-hexane under an atmosphere of nitrogen
(Fig. 1). The reactions yielded a monomeric species, an oxo-bridged tet-
ramer and a one dimensional coordination polymer respectively.

5.1. Dichloro(oxo) (2,4-pentanedione) vanadium(V) [VOCly(acac)] [1]

Excess VOCl; was reacted with 2,4-pentanedione (acacH) and
stirred for 2 h under a nitrogen environment. A dark precipitate in a
dark red solution formed immediately but the mixture was stirred for
2 h to ensure a full reaction. The dark purple product, [VOCl,(acac)]
[1], was dissolved in dichloromethane and layered with hexane. After
a week small dark black crystals were observed which were suitable
for single crystal X-ray crystallography. The crystal structure for com-
pound 1 is shown in Fig. 2 along with crystallographic data and selected
bond lengths and angles in Tables 1 and 2.

TH NMR of 1 showed a peak at 2.39 ppm corresponding to the meth-
yl groups on the acac ligand, which was upfield to the same peak, ob-
served at 2.2 ppm, in uncoordinated acacH. In the '"H NMR spectrum
of 1 only one further peak was observed at 6.13 ppm. The integral of
this peak has a 6:1 ratio with the peak corresponding to the two methyl
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Fig. 1. Schematic reaction of excess VOCl; with diethyl malonate, 2,4-pentanedione and diethyl succinate in n-hexane to form compounds 1, 2 and 3 respectively.
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Fig. 2. ORTEP representation of crystal structure of [VOCl,(acac)] [1] with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

groups at 2.39 ppm. This provides clear evidence that one proton from
the acac ligand has been lost on coordination to the vanadium centre
with a concordant upfield chemical shift of 0.7 ppm. This suggests that
the reaction of VOCI3 with acacH proceeds via loss of HCl, as shown in
Scheme 1.

The structure of compound 1, which crystallises in the space group
P2,2424, shows that the acac ligand is bound to the vanadium centre
via the carbonyl oxygen atoms. The V—O bond lengths are 1.903(2) A
for 0(2) and 1.918(2) A for O(3). These are shorter than typical dative
V—O bond distances of ~2.1 A, as described for 2 and 3 (vide infra)
and is the result of the increased electron density given from the car-
bonyl oxygen. A proton from C(3) was lost in the reaction and a
delocalised system is therefore created between 0O(3), C(2), C(3),
C(4) and O(2).

This results in the ligand having an overall negative charge, which is
stabilised by the reaction with the VOCI; resulting in a stronger bond to
the vanadium than seen in complexes of VOCl; with the diesters, diethyl
malonate and diethyl succinate (vide infra). This is evidenced in the
crystal structure of 1 in which, the C2-C3 and C3-C4 bonds between
the carbonyl groups appear shortened (1.398(4) A and 1.383(4) A re-
spectively) [61]. This shows that the central carbon has been
deprotonated leading to a conjugated 6 membered ring system as is fre-
quently seen with coordination compounds of acac [62].

Compound 1 is five coordinate, which is common for vanadium spe-
cies, particularly when a V=0 bond is present. This is also seen for
[VO(acac),], a five coordinate species in which the 4 carbonyl oxygen

Table 1
Crystallographic data for compounds 1-3.
[2] (3]
[1] [VOCl,(diethyl [VOCI,(diethyl
Ligand VOCl,(2,4-pentanedione) malonate)]4 succinate)n
Crystal system Orthorhombic Triclinic Monoclinic
Space group P2:2:24 P-1 P24,
a 8.3503(3) A 12.5230(2) A 15.3393(8) A
b 13.5046(4) A 13.3895(2) A 9.7939(5) A
c 15.2041(5) A 17.5946(3) A 8.6842(5) A
o 90.000(5) 85.7322(14) 90
B 90.000(5) 84.0193(14) 94.664(5)
Y 90.000(5) 73.5084(15) 90
Volume/A 1714.52(9) 2810.34(9) 1300.32(12)
Final R indices [[ 220 R1 = 0.0326 R1 = 0.0551 R1 = 0.0340
(D] wR2 = 0.0647 wR2 = 0.1521 wR2 = 0.0746

atoms take an almost planar geometry with the double bond perpendic-
ular [63]. In the case of compound 1, the geometry is similar, with bond
angles between the oxygen atoms in the acac 0(2)-V(1)-0(3) at
84.62(9)°, whereas the angle between the chlorine atoms and the
equivalent oxygen atoms on the acac are wider, at 86.65(7)° and
88.12(7)°, respectively for O(2)-V(1)-ClI(1) and O(3)-V(1)-CI(2). The
angle between the two chlorines (CI(1)-V(1)-CI(2)) is widest at
93.45(3)°. This is due to the increased repulsion between the chlorine
atoms due to their greater size.

5.2. Dichloro(oxo)
[{VOCl>(CH,(COEL)2}4] [2]

(diethyl malonate) vanadium(1V)

Diethyl malonate was reacted with an excess of VOCl; at room tem-
perature, which yielded dark red crystals of [VOCl,(CH,(CO5Et),]4 [2]
after layering a concentrated solution of 2 in dichloromethane with hex-
ane. NMR spectroscopy displayed strong peak broadening confirming
the presence of a paramagnetic vanadium species. The 'H NMR spectra
of compound 2 show that peaks corresponding to the coordinated li-
gand have shifted downfield compared with that of the unreacted
malonate starting material. The protons on the central carbon showed
the greatest shift, implying they are most heavily deshielded by the
presence of the vanadium, with the signal shifting downfield to
3.5 ppm from 3.2 ppm for the unreacted ligand.

Single crystal X-ray diffraction analysis of the red crystals revealed
that the tetrameric complex [VOCl,(CH;(CO2Et);]4 [2] had formed,
crystallising in the P1 space group as shown in Fig. 3. The crystal struc-
ture of compound 2 is a tetramer linked by four bridging ,-oxygen
atoms. From each of the bridged vanadium centres a chlorine atom
has been lost and the coordination sphere filled with the bridging
V—O bond. Around each vanadium there are 4 V-0 bonds. The two lon-
gest bonds are the dative bonds to the carbonyl groups of the diethyl
malonate. These are similar to the equivalent Ti—O bond lengths
(2.112(4) A and 2.102(4) A) observed for the same malonate ligand co-
ordinating to titanium tetrachloride [64,65]. In the case of the TiCl,
however, all four chlorides are retained, giving a monomeric species.
The formation of tetrameric clusters has been observed previously in
vanadium oxide chemistry when bidentate ligands are used [66]. The
V=0 bond is able to stabilise another unstable centre by coordinating
to the vanadium to give an octahedral species, following the loss of chlo-
ride. It is possible that acac does not follow this motif due to the
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Table 2
Selected bond lengths and angles for compounds 1-3.
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Compound Selected bond lengths A Selected bond angles °

[1] vi-ci 2.2880(8) 02-C2 1.290(4) Cl2-v1-Cl1 93.45(3) 02-V1-Cl2 159.64(7)
V1-Cl2 2.2275(9) 03-C4 1.283(4) 01-V1-Cl1 99.58(9) 02-V1-03 84.62(9)
V1-01 1.569(2) C2-C3 1.398(4) 01-V1-CI2 99.94(9) 02-V1-Cl1 86.65(7)
V1-02 1.903(2) C3-C4 1.383(4) 01-V1-02 100.11(10) 03-V1-CI2 88.12(7)
V1-03 1.918(2) 01-V1-03 101.11(10) C2-02-V1 134.21(19)

[2] V1-01 2.077(3) C3-C4 1.498(7) 01-V1-CI2 89.07(10) 04-V1-01 83.64(13)
V1-02 2.148(3) C4-C5 1.492(7) 01-V1-02 80.58(12) 04-V1-02 78.95(12)
V1-03 1.623(3) C6-C7 1.496(9) 03-V1-01 93.47(14) C3-01-V1 133.1(3)
V1-04 2.036(3) vi-Ci 2.3031(13) 03-V1-02 171.21(15) V2-04-V1 174.44(19)
V4-03 2.027(3) V1-Cl2 2.3023(14) Cl1-v1-Cl2 93.66(5) V1-03-v4 172.1(2)
02-C5 1.222(6)

[3] vi-ci 2.2854(6) 01-C3 1.228(2) Cl2-v1-Cl1 131.62(3) 02'-v1-Cl2 86.74(4)
V1-Cl2 2.2776(6) 04-C3 1.312(2) 03-V1-Cl1 113.26(6) C3-01-V1 142.20(13)
V1-03 1.5783(14) 02-C6 1.237(2) 03-V1-01 93.40(7) (C3-C4-C5 113.60(16)
V1-01 2.0483(13) 05-C6 1.312(2) 03-V1-021 98.62(6) 02'-v1-01 167.72(6)
V1-021 2.0370(13) 05-C7 1.473(2) 01-V1-CI2 85.88(4)
C3-C4 1.487(3) C4-C5 1.530(3)

D XA+Y142Z

difference in the nature of bonding to the vanadium centre, with acac
having undergone the loss of a proton the central carbon giving rise to
a delocalised structure that stabilised the monomeric species [67].

The other two V—O bond lengths represent the bridging oxygen
bonds, this shows that the oxygen atom does not sit equidistant be-
tween the two vanadium atoms. The shorter of the two has a length of
1.623(3) A, close to that expected for a V=0 bond, for example
1.595(5) A observed in VOCl; [68]. The other bridging V—O bond dis-
tance was considerably longer at 2.036(3) A, resembling the dative co-
ordination of the malonate. This shows that the original V=0 bond in
the VOCI; has not been not broken but datively coordinates to another
vanadium atom. This structure has been reported previously by
Sobota et al. formed via accidental exposure to air of [V,(u-
C1),Cl4{CH,(COzEt),}-] as formed from substitution of MeCO,Et by
diethyl malonate in [V,(p-Cl),Cly(MeCO,Et)4] [69]. Herein, however a
direct route to 2 is reported.

Whilst 2 is the same the structure reported by Sobota et al. [69], with
similar R factors (4.94% cf. 5.51%), the crystallographic data differs,
which is likely a result of collection temperature (283-303 K cf. 77 K).
This in turn has resulted in a better data set (Sobota structure has the
unit cell dimensions: a = 12.655(4) A, b = 13.735(3) A, ¢ =
18.141(3) A, compared with: a = 12.5230(2) A, b = 13.3895(2) A,

¢ = 17.5946(3) A, reported here). The low temperature collection re-
ported here has been submitted to the CCDC since there are noticeable
differences in the majority of the bond lengths and angles of the two
structures and we consider this of interest to the field. For example
the V—O bond distance between the vanadium and the carbonyl groups
on the malonate is 2.177(6) A in the previously reported structure, but
is shorter in this case at only 2.077(3) A. These differences are probably
largely the result of the previous structural data being collected at room
temperature, whereas in this study, crystals were analysed at 77 K.

Dimeric oxo-bridged vanadium complexes have been produced in a
similar way by reaction of VOCl3 and pinacol. In this case one of the ox-
ygen atoms of each pinacol ligand was coordinated to both vanadium
centres, acting as bridges, with the other oxygen coordinating to one
[70]. The V—O bond lengths observed for the bridging oxygen atoms
were 2.036(3) A, resembling the dative coordination of the malonate,
rather than a direct oxo bridge. This is likely due to the electron deficient
nature of the vanadium centre. The dative V—O bond length of
2.036(3) A in 2 is still shorter than the V—Cl bonds at 2.3031(13) A.

In compound 2, each of the vanadium atoms are coordinated to two
chlorine atoms, having lost one on coordination to the ligand. The
lengths of the C—C bonds between the two carbonyl groups are
1.492(7) and 1.498(7) A which indicates that both are single bonds
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Scheme 1. Schematic reaction of excess VOCI3 with diethyl malonate, 2,4-pentanedione and diethyl succinate in n-hexane to form compounds 1, 2 and 3 respectively.
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CI7

Clé

Fig. 3. ORTEP representation of crystal structure of [VOCl,(CH,(CO,Et),]4 [2] with thermal
ellipsoids at the 50% probability level. Three of the four diethyl malonate molecules and all
hydrogen atoms omitted for clarity.

[61]. This implies coordination to the vanadium centre has not led to the
loss of a proton from the central carbon atom resulting in the evolution
of HCl as would be expected and observed in the formation of com-
pound 1. Had this occurred the C—C bond lengths would be shortened
to around 1.38 A due to the increased electronic density resulting from
the aromaticity of the resulting species. Therefore, the vanadium centre
has been reduced to V(IV) from V(V) with concurrent oxidation of chlo-
ride ligands to elemental chlorine. This has been observed previously in
the reaction of VOCl3 with 2-ethoxy ethanol, which was shown to coor-
dinate in a bidentate fashion to the vanadium whilst maintaining the
ethanoic proton [71]. This reaction was found to result in the reversible
loss of chlorine ligands via oxidation to Cl,. Vapours from the reaction
were found to test positive for Cl, gas [71].

The formation of tetrameric clusters has been observed previously in
vanadium oxide chemistry when bidentate ligands are used. The V=0
bond is able to stabilise another unstable centre by coordinating to the
vanadium to give an octahedral species, following the loss of chloride.
It is possible that acac does not follow this motif due to the difference
in the nature of bonding to the vanadium centre, with acac having un-
dergone the loss of a proton the central carbon giving rise to a
delocalised structure that stabilised the monomeric species.

5.3. Dichloro(oxo)(diethyl
[VOCL,{CoHy(COzEL) 2} [3]

succinate) vanadium(IV)

Excess VOCl3 was reacted with diethyl succinate in hexane and
stirred for 2 h under nitrogen. The reaction mixture turned from orange
to dark red over 5 min and was left to stir for 2 h to ensure a complete
reaction. The reaction yielded a dark red oily product (Fig. 1). The
flask was left under nitrogen for one month, during which time green

crystals of compound 3 were formed which were suitable for single
crystal X-ray crystallography.

The diethyl succinate acts as a bidentate ligand in 3, with each car-
bonyl binding to a different metal centre rather than chelating as was
observed with the malonate ligand in compound 2, which crystallised
in the space group P2q,. Likewise, each vanadium centre forms
bonds with two different ester groups, forming a polymer chain. This
polymer chain is classed as a one dimensional coordination polymer.
Coordination polymers are metal-ligand complexes that extend “indef-
initely” into one, two or three dimensions via covalent metal-ligand
bonding. Coordination polymers are also known as metal organic
frameworks (MOFs) [72,73]. One dimensional coordination polymers
are of particular interest for their electronic properties, for use as nano-
wires [74].

The first non-cluster vanadium coordination polymer was synthe-
sised by Zhang et al. in 2001, with the synthesis of [VO(dod),]X,
(X = (I, Br; dod = 1,4-diazoniabicyclo [2,2,2]octane-1,4-diacetate)
[75]. There have been two reported 1-dimensional coordination poly-
mers containing vanadium, one with 0,0,N-dichelating ligands [76]
and the other with bidentate ligands coordinating via oxygen atoms
forming the bridge, stabilised by N,N-chelating terephthalate ligands
[73]. Furthermore, succinate has been used as a bridging ligand in a co-
balt based MOF, forming a similar one dimensional chain, stabilised
with benzidine ligands [77].

This is to our knowledge, the first mononuclear 1-dimensional
vanadyl coordination polymer to be isolated as a single crystal and the
structure probed by X-ray diffraction. The presence of the two V—Cl
bonds makes the polymer extremely moisture sensitive. The vanadium
centre is similar to that in 1 in that it is five coordinate, bound to three
oxygen atoms and two chlorine atoms. The complexes differ in the
way that the ligand is oriented. In compound 1, the carbonyl oxygen
atoms are cis to each other since they are from the same acac ligand.
In compound 3, the carbonyl oxygen atoms originate from two different
molecules and are positioned axial to each other, rather than basal, as in
the case for 1. This is reflected in the O(1)-V(1)-0(21) bond angle of
167.72(6)° in 3, whereas in compound 1 the equivalent O-V-O angle be-
tween the carbonyl oxygen atoms is 84.62(9)°.

Structure 3 differs from the related cobalt polymer synthesised by
Roy et al. [77], since the O-M-0 bond angle was observed to be 180°.
This is due to the electronegativity of the two chloride ligands, resulting
in the CI(1)-V(1)-CI(2) bond angle being 131.62(3)°, as opposed to the
expected 120° for a five coordinate geometry. Regardless of this the
chain is linear due to the positioning of the succinate bridge.

The V—O bond lengths in 3 for the carbonyl oxygen atoms are
2.0483(13) A and 2.0370(13) A respectively, which resembles the da-
tive coordinative bonds observed with the malonate ligand in 2. It is
likely that 3 forms this polymer because of the two bridging carbon
atoms between the ester groups. When there is one bridging carbon,
as is the case with the malonate and the acac, both of the ketones lie
on the same side of the chain. In the case of the succinate ligand there
are two bridging carbon atoms, the bond between which can rotate
freely, allowing the carbonyls to lie on opposite sides due to steric hin-
drance. Furthermore, the thermodynamics of 6-membered ring forma-
tion is more favourable than 7-membered ring formation, hence
ligand acts as a bridge (Fig. 4).

Each of the diester molecules were observed to have dative coordi-
nation to the vanadium metal centre, facilitated by the loss of a molecule
of chlorine, as was observed for compound 2. The structures differ great-
ly according to the ligand, with the malonates appearing to favour oxo-
bridged oligomeric structures, whilst the less oxygen rich acac favours a
simple monomeric species.

Another interesting characteristic of the diester species is that both
the NMR spectra and bond lengths observed suggests that there is no
deprotonation of the ligand to form a conjugated species, as is observed
in the acac ligand. This may relate back to the propensity for forming
oligomeric and polymeric species, which could facilitate the loss of Cl,
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Fig. 4. ORTEP representation of crystal structure of [VOCl»{C;H4(CO5Et),}] [3] with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.
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gas in the event of the dimerization of two unstable vanadium centres
as a preferable reaction pathway [71].

5.4. Synthesis and characterisation of vanadium nitride powders

Vanadium nitride powders were synthesised by annealing com-
pounds 1, 2 and 3 under nitrogen gas.

flow at 1200 °C for 24 h. It is necessary to treat vanadium species at
such high temperatures to illicit the formation of vanadium nitride due
to the intrinsic stability of various vanadium oxides such as V,0s. All
compounds produced a grey powder containing gold flecks. Com-
pounds 1, 2 and 3 showed near complete transformation to vanadium
nitride at 1200 °C as evidenced by the XRD patterns in Fig. 5¢) and
d) and Fig. S5, ESIL. The XRD patterns were compared to a VN standard
(ICSD 22321), all samples were shown to be phase pure with only dif-
fraction peaks for VN visible. For the VN o unit cell, the total calculated
volume is 566.8 & 2 A3 (a 0.35% maximum error), which compares with
the ICSD standard of 567.5 A - a difference of 0.117%. Ortega et al. [78]
determined the reaction mechanism for the reaction of vanadium(III)
oxide (V,03) and carbon in the presence of nitrogen gas at elevated

temperatures (up to 1180 °C). Nitridation was simultaneous with
carbothermal reduction, from V5,05 to VgC; to VN, and was completed
at lower temperatures than just V503 in nitrogen. Compounds 1, 2 and
3 decomposed in nitrogen gas is similar to this system due to the pres-
ence of oxygen and carbon in the compounds. Ortega et al. [ 79] followed
the progress of the reaction of by measuring the partial pressures of
evolved carbon monoxide, supporting the V,05-V,04-V0O,-V,03-
VO,.9-VN pathway, despite the difficulty in the detection of Vg.

XPS analysis, Figs. 5b) and S6, showed the presence of vanadium ni-
tride in both the N1s and V2ps,, at 397.2 and 513.6 eV respectively.
These match exactly with literature values [80]. The XPS also showed
evidence for vanadium carbide and oxidised V°*. The carbide was likely
due to excess carbon presence in the precursor and the V°* signal is
typical for surface bound oxygen in vanadium surfaces and from the ox-
ygen containing precursors themselves [66,81].

TEM analysis of all VN samples showed the formation of large, poly-
disperse crystallites of VN (42.9 nm (sample derived from 1), 88.4 nm
(sample derived from 2) and 72.4 nm (sample derived from 3). Small
amounts of crystalline carbon was also present around the edges of
the VN crystallites, a consequence of carbonaceous ligands present in
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Fig. 6. Composite figure for the VC sample derived from complex 2. a) shows an EDS spectrum demonstrating the presence of vanadium and high levels of carbon. Copper emanated from
the copper mesh TEM grid. b) Fitted V2p XPS spectrum showing the regions assigned as VC and VO. c¢) and d) show XRD patterns of VC derived from complex 2 compared to a VC ICSD
standard (159870). e) is an HRTEM image of a VC crystal with the (11) plane of VC highlighted.
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the initial complexes. In some cases, this was observed as a coating
around the VN (see Fig. S1, ESI a)). HRTEM analysis of all samples dem-
onstrated the presence of VN, via analysis of the d-spacings. Several d-
spacings were indexed (Figs. 5e) and S1 b) and d), with the <(111)
plane of VN identified in all samples, with d-spacings from the samples
derived from compounds 1, 2 and 3: 0.24 nm, 0.2 nm and 0.23 nm re-
spectively and commensurate with obtained XRD patterns.

EDS analysis indicated the presence of nitrogen and vanadium with
relatively low amounts of carbon (Figs. 5a) and S3 a) and c) in all sam-
ples analysed. Quantitative EDS analysis in all samples showed a ca.
50:50 at.% ratio, indicative of the formation of VN. The presence of resid-
ual carbon species presented difficulties in integrating the nitrogen peak
as their EDS fingerprints appear in the same region of the spectrum. The
relatively low amount of carbon in the sample (ca. 23% of total) com-
pared to 88% in the equivalent VC sample and the large VN crystallites
allowed for accurate confirmation of a 50:50 at.% ratio of V:N, and there-
fore confirmation of the VN empirical formula.

5.5. Synthesis and characterisation of vanadium carbide powders

Vanadium carbide powders were synthesised by annealing com-
pounds 1, 2 and 3 under an argon flow at 1200 °C for 24 h, yielding a
black powder. There was evidence to show a transformation to VC
under these conditions, however phase purity in compounds 1 and 3
was difficult to obtain (Fig. S6). The VC derived from compound 2
showed excellent conversion as evidenced by XRD analysis in Fig. 6¢).
It is noteworthy that lowering the temperature to 1000 °C under nitro-
gen induced compound's 1, 2 and 3's transformation to VN but not to
pure VC under Ar (Fig. S8). The XRD patterns were compared to a vana-
dium carbide standard (ICSD 159870), Fig. 6d). For the VC; oo unit cell,
the calculated total volume is 577.8 & 2 A® (a 0.35% maximum error),
which compares with the ICSD standard of 578.8 A3, a % difference of
0.169%. As shown, the samples produced were phase pure, with only
diffraction peaks for VC present in the patterns. Previous work by
Nartowski et al. were able to demonstrate the synthesis of VgC; pow-
ders by the reaction of VCl; and CaC, at 1000 °C for 2 days [82], but
were unable to isolate phase pure VC; oo using this route, showing the
advantage of our single source precursor method. This is also supported
by research from Kim et al. who synthesised VgC; from the pyrolysis of
the metal-organic framework MIL-47 at 1100 °C for 6 h [48].

XPS analysis (Figs. 6b) and S7, ESI) showed the presence of vanadi-
um carbide in both the C1s and V2p;,, at 282.8 and 513.7 eV respective-
ly. These are in agreement with literature values [83]. The C1s showed
several other environments, which were matched to C—C, C—O0 and
C-OR- with these environments being more intense than the V—C sig-
nal. This was also reflected in the V2p signal, which was significantly
weaker than the C1s, this was attributed to the formation of a carbon
‘shell’ around the VC particles during annealing.

TEM analysis of all VC samples showed the formation of large, poly-
disperse crystallites of VC (111.7 nm (sample derived from 1), 108.8 nm
(sample derived from 2) and 101.1 nm (sample derived from 3) similar
to those obtained for VN. A large amount of crystalline carbon was in ev-
idence (Fig. S2 c¢)). HRTEM analysis of all samples demonstrated the
presence of VN, via analysis of the d-spacings. Several d-spacings were
indexed (Fig. 6e) and Fig. S2 b) and d) ESI, with the (111) plane of
VC identified in all samples, with d-spacings from the samples derived
from compounds 1, 2 and 3: 0.22 nm, 0.22 nm and 0.23 nm respectively,
commensurate with obtained XRD patterns.

EDS analysis indicated the presence of carbon and vanadium with
high amounts of carbon (Figs. 6a) and S3 b) and d) in all samples
analysed. Quantitative EDS analysis showed a small difference in each
of the samples. The sample derived from 1 showed a ca. 95:5 at.% ratio
of C:V, the sample derived from 2 a ca. 90:10 at.% ratio, and the sample
derived from 3 a ca. 85:15 at.% ratio. The carbon film on the TEM grid
skews the ratio in favour of carbon, but the carbon-rich nature of the

structures produced was confirmed by quantitative XPS giving ratios
of 94.3 carbon : 5.7 vanadium for the sample derived from 1.

6. Conclusion

The crystal structures for complexes 1, 2 and 3, resulting from
the reaction of the 2,4-pentanedione and diesters with the
vanadium(V) oxytrichloride show different behaviour, from a mono-
mer in 1, a tetramer in 2, to a 1D co-ordination polymer in 3. With
VOCls, all three molecules coordinating to the vanadium lead to the
loss of a chlorine atom. This is significant as the reaction could not be re-
versed by simple dissociation of the ligand alone. To compensate for the
loss of the chlorine atom, the diester complexes 2 and 3, form a ring and
a chain respectively, with the oxygen of the VOCI; forming a dative bond
with another metal centre.

Complexes 1, 2 and 3 were evaluated for their propensity to form VN
and VC on annealing at 1200 °C under nitrogen and argon gas respec-
tively. All samples converted to VN at 1200 °C under nitrogen, but com-
plex 2 was the only molecule shown to be a viable precursor for both VC
and VN. These complexes should therefore provoke further interest in
the investigation of molecular species as precursors for hard materials.
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