90 research outputs found

    Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision”

    Get PDF
    Until now, the results of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and cells are remarkably complex. In order to get a deep understanding of the NP-cell interactions, scientists have focused on the physicochemical effects. However, there are still considerable debates about the regulation of nanomaterials and the reported results are usually in contradictions. Here, we are going to introduce the potential key reasons for these conflicts. In this case, modification of conventional in vitro toxicity assays, is one of the crucial ignored matter in nanotoxicological sciences. More specifically, the conventional methods neglect important factors such as the sedimentation of NPs and absorption of proteins and other essential biomolecules onto the surface of NPs. Another ignored matter in nanotoxicological sciences is the effect of cell “vision” (i.e., cell type). In order to show the effects of these ignored subjects, we probed the effect of superparamagnetic iron oxide NPs (SPIONs), with various surface chemistries, on various cell lines. We found thatthe modification of conventional toxicity assays and the consideration of the “cell vision” concept are crucial matters to obtain reliable, and reproducible nanotoxicology data. These new concepts offer a suitable way to obtain a deep understanding on the cell-NP interactions. In addition, by consideration of these ignored factors, the conflict of future toxicological reports would be significantly decreased

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    Surface patterned polymer micro-cantilever arrays for sensing

    No full text
    Microinjection molding was employed to fabricate low-cost polymer cantilever arrays for sensor applications. Cantilevers with micrometer dimensions and aspect ratios as large as 10 were successfully manufactured from polymers, including polypropylene and polyvinylidenfluoride. The cantilevers perform similar to the established silicon cantilevers, with Q-factors in the range of 10–20. Static deflection of gold coated polymer cantilevers was characterized with heat cycling and self-assembled monolayer formation of mercaptohexanols. A hybrid mold concept allows easy modification of the surface topography, enabling customized mechanical properties of individual cantilevers. Combined with functionalization and surface patterning, the cantilever arrays are qualified for biomedical application

    Hepatic Tumor Radioembolization in a Rat Model Using Radioactive Rhenium (š⁸⁜Re/š⁸⁸Re) Glass Microspheres

    No full text
    Purpose: the aim of this study was to fully characterize newly developed radioactive rhenium glass microspheres in vivo by determining their biodistribution, stability, antitumor effect, and toxicity after hepatic arterial injection in a syngeneic rat hepatoma model. The dose response of the tumors to increasing amounts of radioactive 186Re and 188Re microspheres was also determined. Methods and Materials: Rhenium glass microspheres were made radioactive by neutron activation and then injected into the hepatic artery of Sprague-Dawley rats containing 1-week-old Novikoff hepatomas. The biodistribution of the radioactivity and tumor growth were determined 1 h and 14 days after injection. Results: Examination of the biodistribution indicated a time-dependent, up to 7-fold increase in Novikoff hepatoma uptake as compared to healthy liver tissue uptake. After 14 days, the average T:L ratio was 1.97. Tumor growth in the rats receiving radioactive microspheres was significantly lower than in the group receiving nonradioactive microspheres (142% vs. 4824%, p = 0.048). Immediately after injection, 0.065% of the injected radioactivity was measured in the thyroid; it decreased to background levels within 24 h. Conclusion: Radioactive rhenium microspheres are effective in diminishing tumor growth without altering hepatic enzyme levels. The microspheres are safe with respect to their radiation dose to healthy tissue and radiation release in vivo and can be directly imaged in the body with a gamma camera. Furthermore, rhenium microspheres have an advantage over pure beta-emitting microspheres in terms of preparation and neutron-activation time. In sum, this novel radiopharmaceutical may provide an innovative and cost-effective approach for the treatment of nonresectable liver cancer
    • …
    corecore