120,820 research outputs found

    A method for solving moving boundary problems in heat flow Part I: Using cubic splines

    Get PDF
    A new approach to a heat-flow problem involving a moving boundary makes use of a grid system which moves with the boundary. The necessary interpolations are performed by using cubic splines. The method smooths out irregularities in the motion of the boundary which were evident in previous calculations based on a fixed grid system

    A method for solving moving boundary problems in heat flow part ii: Using cubic polynomials

    Get PDF
    A moving grid system has been used to get the solution of the moving boundary problem discussed earlier in Part I, but basing the necessary interpolations on ordinary cubic polynomials rather than splines. The computations are much more economical and the results obtained are also found to he more satiafactory

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    Interpretation of Semantic Tweet Representations

    Full text link
    Research in analysis of microblogging platforms is experiencing a renewed surge with a large number of works applying representation learning models for applications like sentiment analysis, semantic textual similarity computation, hashtag prediction, etc. Although the performance of the representation learning models has been better than the traditional baselines for such tasks, little is known about the elementary properties of a tweet encoded within these representations, or why particular representations work better for certain tasks. Our work presented here constitutes the first step in opening the black-box of vector embeddings for tweets. Traditional feature engineering methods for high-level applications have exploited various elementary properties of tweets. We believe that a tweet representation is effective for an application because it meticulously encodes the application-specific elementary properties of tweets. To understand the elementary properties encoded in a tweet representation, we evaluate the representations on the accuracy to which they can model each of those properties such as tweet length, presence of particular words, hashtags, mentions, capitalization, etc. Our systematic extensive study of nine supervised and four unsupervised tweet representations against most popular eight textual and five social elementary properties reveal that Bi-directional LSTMs (BLSTMs) and Skip-Thought Vectors (STV) best encode the textual and social properties of tweets respectively. FastText is the best model for low resource settings, providing very little degradation with reduction in embedding size. Finally, we draw interesting insights by correlating the model performance obtained for elementary property prediction tasks with the highlevel downstream applications.Comment: Accepted at ASONAM 2017; Initial version presented at NIPS 2016 workshop can be found at arXiv:1611.0488

    Topological Density and Instantons on a Lattice

    Get PDF
    We present an update on the study of topological structure of QCD. Issues addressed include a comparison between the plaquette and the geometric methods of calculating the topological density. We show that the improved gauge action based on sqrt(3) blocking transformation suppresses the formation of topologically charged dislocations with low action. Using a cooling method we identify the instantons' location, estimate their size and density, and calculate the renormalization constant Z_Q for the plaquette method.Comment: 3 Pages, submitted to Proceedings of XII International Symposium on Lattice Field Theory (Lattice 94, Bielefeld). uuencoded tar file includes figures as TeXDraw (.tex) file

    Weighted Density Approximation Description of Insulating YH3_3 and LaH3_3

    Full text link
    Density functional calculations within the weighted density approximation (WDA) are presented for YH3_3 and LaH3_3. We investigate some commonly used pair-distribution functions G. These calculations show that within a consistent density functional framework a substantial insulating gap can be obtained while at the same time retaining structural properties in accord with experimental data. Our WDA band structures agree with those of GWGW approximation very well, but the calculated band gaps are still 1.0-2.0 eV smaller than experimental findings.Comment: 6 Pages, 3 figure

    Cohesion of BaReH9_9 and BaMnH9_9: Density Functional Calculations and Prediction of (MnH9)2_9)^{2-} Salts

    Full text link
    Density functional calculations are used to calculate the structural and electronic properties of BaReH9_9 and to analyze the bonding in this compound. The high coordination in BaReH9_9 is due to bonding between Re 5dd states and states of dd-like symmetry formed from combinations of H ss orbitals in the H9_9 cage. This explains the structure of the material, its short bond lengths and other physical properties, such as the high band gap. We compare with results for hypothetical BaMnH9_9, which we find to have similar bonding and cohesion to the Re compound. This suggests that it may be possible to synthesize (MnH9)2_9)^{2-} salts. Depending on the particular cation, such salts may have exceptionally high hydrogen contents, in excess of 10 weight
    corecore