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ABSTRACT

A new approach to a heat-flow problem involving a
moving boundary makes use of a grid system which moves
with the boundary. The necessary interpolations are
performed by using cubic splines. The method smooths
out irregularities in the motion of the boundary which
were evident in previous calculations based on a fixed

grid system.
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Introduction.

Previous papers have described various ways of dealing with a
moving boundary in heat flow or diffusion problems. Most of them
refer to a boundary on which a change of physical state occurs
with the absorption or liberation of latent heat. The present authors
[1] have discussed a slightly different problem presented by the
diffusion of oxygen in an absorbing medium and the counterpart in
heat flow is clearly of interest. An early finite-difference
method [2] proposed the use of a variable time step chosen so that
the boundary always moves from one line of the space grid to the
neighbouring one in a single time step. Another method [3] which
maintains a fixed number of equal space intervals between the moving
boundary and the surface of the medium, the size of interval being
correspondingly adjusted, leads to a more complicated form of the
heat flow equation. It contains a parameter which is the unknown
velocity of the moving boundary and is analogous to the equation
which results from the use of a transformed space variable expressed
as a fraction of the space coordinate of the boundary which is
time-dependent. The present authors [1] used finite-difference
formulae for unequal intervals in the region of the moving boundary
together with a Taylor's series expansion.

In the present paper, use is made of a uniform space-grid
which moves with the velocity of the moving boundary. This has
the effect of transferring the unequal interval from the neighbour-
hood of the moving boundary to the surface of the medium. An
improvement in the degree of smoothness in the calculated motion
of the boundary is effected. The method discussed makes use of
interpolating oubic splines.



2. An Example.

We shall introduce the new method by referring to a practical
problem which the authors described in detail in the earlier paper [1].
Expressed in non-dimensional terms we require the solution of the

equation
ou 0%
—=—-1, 0<xZ93(t), 1
ot ox’ ® M

with the boundary conditions

N_o, x=0, (20, (2)
Ox
u=@=0, x =9(t), t>0, 3)
15).4
and the initial condition
u:%(l—x)z, 0<x<l, t=0, 4)

Where 8(t)denotes the position of the moving boundary at time t.

3. A Moving Grid System.

Traditionally, we divide the region 0<x <1 into n intervals
each of width Ax such that x;=1Ax,1=0,1, .......... n and nAx = 1.
By some numerical procedure we advance the solution in finite time
steps At, starting from the known solution at t = 0, given by(4).
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Fig. 1. Moving Grid.



We denote by Uf the values of u at (1Ax, jAt), j=0,1,2 ...,

so that in the first interval At we evaluate U], and also the

new position of the boundary which has moved from x = 1 to x= 1-€,
say, as in Figure 1. We now move the whole grid a distance € to
the left as indicated by the broken lines, and we wish to evaluate
values of U° and the second space derivatives at each of the points
X|{ -€, X2-€, .... Xp.1-€, 1l-€. We describe below a method of
doing this, using cubic splines for interpolating between the
points Xg, X; , X2 .... Xn-1, 1 att = 0. We can then proceed in similar
fashion to 2 At and in general to jAt (j = 3,4,....) provided we
include a modification to allow for the unequal interval &' at the

jth time step near the surface x = 0.

Forward-Difference Spline (F.D.S.) Method.

We base our interpolations in x; < X < Xj+1 ,1=0,2,3, ... n- 1,
on the cubic spline given by

s =U, + (x—-x,) {M— %(xiﬂ—xi)(zS" x) + X" (x,)

X — X
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where S"(xj) denote the second derivatives at x;, (1=0, 1,2, ...n-1).

These are determined from the following tridiagonal set of equations

(6 =%0) 8" () + 2(xi=x5) 8" (%) + (0 = %) 8" (x0)

— 6{Ui+1 _Ui _ Ui _Uil} : (6)

Xiq — X X; =X

1i=1,2,....n-1.



The equations express the continuity of the first derivatives S'(xyr).
They form a set of only n-1 equations while there are n + 1 unknown
function values to be evaluated. We derive two further relationships
from the given boundary conditions.

Differentiating (5) with respect to x and using (2) we find

6(U,~U,) _ 6(U,~U,)

2S" S" 5 — > 5
O S = ) e

(7

Similarly at the moving boundary, 6 (t), we can find a relation

given by
" n 6U1’1*
S"(x,,) + 28" (x,) =T21- ®)
But we have also shown in [1] that
2 3 4 2
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The moving boundary, giving S"(x,) = 1.

Since we make use of (9) later on, to determine the position
of the moving boundary, we prefer to include it rather than (8) in
the solution of the tridiagonal set of equations given by (6). Having
determined the second derivatives at the given points or knots,
the values of u(x) at intermediate points can be found from (5). The
second derivatives at the intermediate points are readily available,
for a cubic spline, by linear interpolation between the knots.

Assuming the function values to be known' at any time jAt when
the distance of the moving boundary from the surface x = 0 is

&I +rAx, the method proceeds as follows. Obtain the second
derivatives S"(xi), 1 =0,1, .... ,(r + 1) by solving the tridiagonal
set (6 ) together with (7) and ( 9) . The value of U™ i.e. at



the point neighbouring the moving boundary, follows
from the simple explicit relationship

#o_yTi _
Ur At Ur — Sn (Xi) _1 , (10)

where S"(x!) denotes the value of the second derivative at x;
att=jAt.

The Taylor's series for U; obtained by expanding about
the moving point can be written as

2 3
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where /(0 < /< A x) is the distance of the moving point from U, .

Using (3) and (9) and assuming that the boundary is not
moving too quickly, the above relation gives to a reasonable accuracy

= JQ@u,). (11)

Therefore, once U™ is known from (10), we can find the
position of the moving boundary from (11 ). Hence, the
movement, €, of the boundary in time At, from jAt to
(J+1) At is given by

e = Ax -0, (12)

Having got € from (12) we then interpolate the values of
u(x) att = jAt at the points x; - €, X - €, ...., X;- €, 0 - €



using (5) and the corresponding second derivatives from
the linear relationship

Ty _Qn " ] _ [[yam
S (Xi-i—'l) S (X) — S (Xi+.1) S (Xi) , (13)
XiJ+1_X Xij+1 - XiJ
where x! denotes the ith mesh point such that x’ = &' + (i—1)Ax
at time jAt; x! <x<x},andi=0,1, ..., .
The values of u(x) at x;, x2,.....X;, at time (j+1) At follow
at once from
g Y (v — e , .
U (Xi ) U(Xl € )= SH(Xij_E]H)_l’ (14)
At
XM =xl - ", i= 12,..r.
together with
uitt — yl )
—— = §"(x!)-1, at the surface x = 0.
At
as)

We should remember that the space interval x; - xo = & is not

fixed and varies from one time step to the next.

Proceeding in steps At in this way we eventually find that
the points xop and x; come so close together that the values of u
there are not significantly different, to the'accuracy of working.
We then replace & by Ax + & to get values at the next time step

and proceed as before.



Results and Discussion.

In our previous paper [1], an analytical solution
satisfactory for small times was obtained which is given by

~Lag_x)y2 _— t _Lz X_
u(x,t) 2(l X) 2 (”j exp {(2\5]} + xerfc (2\/;} ,

0 <x <1 andtsmall

We start the present solution from the values taken
from (16) at t = 0.025 when the boundary 6 = 1, has not moved
to an accuracy of six significant figures [1]. The positions
of the moving boundary and the surface concentrations have been
computed by the FDS method and are compared 3n Tables I and II
respectively, with the corresponding values obtained from the
previous method of [1] which from now on we call the Fixed
Grid Lagrange (FG-L) method. The values show a reasonably
good agreement between the two methods. We are not able to
assess the accuracy of the results by a rigorous analysis so
we have quoted results by the FGL method for Ax = 0.05 as well
as for Ax = 0.10. The surface values of u are in good agreement.
The calculated positions of the moving boundary agree reasonably
well until the concentrations are everywhere quite small.

Now let us consider the major problem of roughness in
the positions of the moving boundary which is produced by
the FGL method near the times when the process used to calculate
the concentration in the neighbourhood of the moving point
is transferred one space interval towards the surface x = 0.
Table III gives the positions of the boundary at and around
such times of shifting the interval in the FGL method, along



TABLEI
Comparison of 10*9 at different times. The numerical

solutions start from the analytical solution at t = 0.025.

Ti
T 10040 | 0.060| 0.100 | 0.120 | 0140 | 0.160 | 0.180 | 0.185
Method
Ax =0.10 | 9988 9905 | 9312 8747 7912 | 6756 | 4849 4014
FGL
Ax=0.05 | 9992 9918 | 9346 8781 7966 | 6799 | 4942 4178
FDS Ax=0.10 | 9993 9920 | 9327 8739 7892 6664 | 4680 3917
TABLE II
Comparison of 10* U at the surface x = 0, at different times.
The numerical solutions start from the analytical solution
at t = 0.025.
Time
0.040 0.060 0.100 [ 0.120 | 0.140 | 0.160 | 0.180 | 0.185
Method
Ax =0.10 2745 2238 1434 1094 781 490 | 220 156
FGL
Ax=0.05 2742 2234 1430 1089 777 486 | 216 151
FDS Ax=0.10 2736 2277 1424 1083 771 481 | 210 145




TABLE III

Table showing the irregularities in the position of the moving
boundary, calculated by the FGL method. Comparatively smooth
figures are shown for the FDS method (Ax = 0.10)

Ti FGL Method FDS Method
tme 10% ‘A A 10% A A
9099 9118
9070 gg ! 9090 %g 1
0.110 9040 . 0 9061 .
9010 o 4 9031 "
8984 9001
8141 8133
8089 gg 3 8086 j; 0
0.137 8034 p 15 3039 p 1
7994 o 0 7991 o 1
7954 7942
7277 7214
7204 ;(3) 7 7150 2‘5‘ !
0.154 7124 o 7 7085 o 2
7037 - 35 7018 o )
6985 6950
6396 6266
6306 1(9)(3) 13 6180 gg 1
0.167 6203 o 55 6093 o
6045 o 92 6003 o 3
5979 5910
5499 5406
5393 }gg 19 5296 H(s) 5
0.176 5268 iy 123 s181 o 3
5020 o e 5063 i 5
4937 4940
4652 4397
4538 } ;‘2‘ 18 4245 }Zg 8
0.184 4406 s 260 4085 o 8
4014 290 3917 o 11
3912 3738

NOTE: The data are tabulated at an interval of time At = 0.001. The underlined
values correspond to the times when the interpolation process near the
moving boundary is transferred one step to the left.




TABLE IV

Table showing the smoothness of the surface concentrations
calculated by the FDS method. Comparative figures are
given for the FGL method (Ax = 0.10).

Ti FGL Method FDS Method
me 10°U, A 10*U, ‘A
1371 1381
1353 }5 1363 }g
0.105 1336 " 1346 "
1318 o 1328 o
1301 1311
862 872
847 ig 856 }2
0.136 832 841
16 15
816 . 826 >
801 811
594 604
580 }j 590 }g
0.154 566 575
15 14
551 ” 561 o
537 547
411 421
308 }i 407 ij
0.167 384 o 393 o
370 o 380 o
357 366
276 286
263 }g 272 }i
0.177 250 o 259 >
236 o 246 >
223 233
184 13 194 5
171 > 181 >
0.184 158 168
13 13
145 o 155 o
133 143

NOTE: The data are tabulated at an interval of time At = 0.001.
The underlined values correspond to the times given in the first

column, when the first space interval is increased by Ax.



11.

with the corresponding figures from the FDS method.
The irregularities produced in the former method are clearly
visible, whereas their counterparts show a smooth behaviour
throughout.

Table IV gives the surface concentrations computed
from the present method at and around the times when the first
space interval & 1is increased to & + Ax for the succeeding

computations. It is interesting to note that the differences
in the concentrations show no sign of irregularities.
The comparative figures from the PGL method are also given
in Table IV.

It has also been noted that the results obtained by
using (8) instead of (9) are very close.

Generalisation

Let us consider a problem in heat flow in which
a change of 3tate occurs with latent heat on a moving
boundary. In non-dimensional form the relevant equations
are

ou o’u

— = , 0 x<6(t ; 17
% - o X (t) (17)
Ml x=0 t >0 ; (18)
ox

u =0 , x=0(t), t=0 ; (19)
ou 00

u_ _ 0 - _§ x=58() 20
ox 2t X (t) (20)

5§ = 0, t=10. (21)



In order to get a solution of the tridiagonal set of
equations (6) we need to know two more equations
involving second derivatives at the grid points. We
replace the surface condition (18) by an equation
corresponding to (7) which is given by

28 (X,) - S'(X,) = gi U, -U,) +2 . 22)

S

By differentiating (19) with respect to t and using
(17) and (20) it is easy to show that

2 2 :
(8_;:) _ (ﬁj _ 5, (23)
[6) QY ot
giving S" (x,) = §'where & is a function of time t.
Let us assume that the values of Ug, U; .... U;, U4y

are known at the jth time level and the position of
the moving boundary is also known at that time which is

given by 8'=&' + rAx. The width of all the meshes

is Ax except the first one which is &’.

The Taylor's expansion for U, about the
moving boundary can be written as

2
U, = (U),_, —Ax (a—uj +1—AX2 61; ...... ,
0x ), _s 2 ox” ).

which after substituting from (20) and (22) gives

§ = -1+ J1+20, . (24)

12.
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By putting value of 5 from (24) in (23), we get

S (x.,) = (-1+1+20) . (25)

The tridiagonal set of equation (6) together with (22)
and (25) can now be solved giving the second derivatives
at Xg, Xy, ....X,,...X,, X,,; at time (j + 1) At at time j At.

The relation (24) also gives the new value of

5 i.e. ' at time (j + 1)At after replacing 5 by a forward
finite difference i.e.

i :
07 =% -1 + y1+20! . (26)

At

The desired interpolation for the value of U and its
second derivatives can then be oarried out as described
in section 4. It should, however, be mentioned here that
the boundary 6(t) is moving forward i.e. away from the
surface x = 0. In this situation the first interval
& is to be "broken into two when it becomes larger

than Ax. The new interval near the surface will then be
of width £-Ax. The value of u, at the new mesh point,

has to be interpolated using (5).
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