814 research outputs found

    Free Radicals in Superfluid Liquid Helium Nanodroplets: A Pyrolysis Source for the Production of Propargyl Radical

    Full text link
    An effusive pyrolysis source is described for generating a continuous beam of radicals under conditions appropriate for the helium droplet pick-up method. Rotationally resolved spectra are reported for the ν1\nu_1 vibrational mode of the propargyl radical in helium droplets at 3322.15 cm−1^{-1}. Stark spectra are also recorded that allow for the first experimental determination of the permanent electric dipole moment of propargyl, namely -0.150 D and -0.148 D for ground and excited state, respectively, in good agreement with previously reported ab initio results of -0.14 D [1]. The infrared spectrum of the ν1\nu_1 mode of propargyl-bromide is also reported. The future application of these methods for the production of novel radical clusters is discussed

    The Critical Role of Water at the Gold-titania Interface in Catalytic CO Oxidation

    Get PDF
    We provide direct evidence of a water-mediated reaction mechanism for room-temperature CO oxidation over Au/TiO2 catalysts. A hydrogen/deuterium kinetic isotope effect of nearly 2 implicates O-H(D) bond breaking in the rate-determining step. Kinetics and in situ infrared spectroscopy experiments showed that the coverage of weakly adsorbed water on TiO2 largely determines catalyst activity by changing the number of active sites. Density functional theory calculations indicated that proton transfer at the metal-support interface facilitates O2 binding and activation; the resulting Au-OOH species readily reacts with adsorbed Au-CO, yielding Au-COOH. Au-COOH decomposition involves proton transfer to water and was suggested to be rate determining. These results provide a unified explanation to disparate literature results, clearly defining the mechanistic roles of water, support OH groups, and the metal-support interface

    NaBr Poisoning of Au/TiO\u3csub\u3e2\u3c/sub\u3e Catalysts: Effects on Kinetics, Poisoning Mechanism, and Estimation of the Number of Catalytic Active Sites

    Get PDF
    Sodium bromide was used to intentionally poison a commercial Au/TiO2 catalyst with the goals of understanding the nature of halide poisoning and evaluating the number and nature of the catalytic active sites. A series of eight poisoned catalysts were prepared by impregnating the parent catalyst with methanolic solutions of NaBr. Each catalyst was tested with CO oxidation catalysis under differential reactor conditions; O2 reaction orders and Arrhenius activation energies were determined for each material. All of the kinetic data, including a Michaelis−Menten analysis, indicated that the primary effect of adding NaBr was to reduce the number of catalytically active sites. Density functional theory calculations, employed to evaluate likely binding sites for NaBr, showed that NaBr binds more strongly to Au corner and edge atoms than it does to the titania support or to exposed Au face atoms. Infrared spectroscopy of adsorbed CO, along with a Temkin analysis of the data, was also used to evaluate changes to the catalyst upon NaBr deposition. These studies suggested that NaBr addition induces some subtle changes in the coverage dependent properties of CO adsorption, but that these did not substantially impact the CO coverage of the CO binding sites. The experimental and computational results are discussed in terms of possible poisoning mechanisms (siteblocking vs off-site binding and modification); the nature and number of active sites are also discussed in the context of the results

    Stacked but not Stuck: Unveiling the Role of π→π* Interactions with the Help of the Benzofuran–Formaldehyde Complex

    Get PDF
    The 1:1 benzofuran–formaldehyde complex has been chosen as model system for analyzing π→π* interactions in supramolecular organizations involving heteroaromatic rings and carbonyl groups. A joint “rotational spectroscopy–quantum chemistry” strategy unveiled the dominant role of π→π* interactions in tuning the intermolecular interactions of such adduct. The exploration of the intermolecular potential energy surface led to the identification of 14 low-energy minima, with 4 stacked isomers being more stable than those linked by hydrogen bond or lone-pair→π interactions. All energy minima are separated by loose transition states, thus suggesting an effective relaxation to the global minimum under the experimental conditions. This expectation has been confirmed by the experimental detection of only one species, which was unambiguously assigned owing to the computation of accurate spectroscopic parameters and the characterization of 11 isotopologues. The large number of isotopic species opened the way to the determination of the first semi-experimental equilibrium structure for a molecular complex of such a dimension

    Conformational steering in dicarboxy acids: the native structure of succinic acid

    Get PDF
    Succinic acid, a dicarboxylic acid molecule, has been investigated spectroscopically with computational support to elucidate the complex aspects of its conformational composition. Due to the torsional freedom of the carbon backbone and hydroxy groups, a large number of potentially plausible conformers can be generated with an indication that the gauche conformer is favored over the trans form. The microwave and millimeter wave spectra have been analyzed and accurate spectroscopic constants have been derived that correlate best with those of the lowest energy gauche conformer. For an unambiguous conformational identification measurements were extended to the monosubstituted isotopologues, precisely determining the structural properties. Besides bond distances and angles, particularly the dihedral angle has been determined to be 67.76(11)°, confirming the anomalous tendency of the methylene units to favor gauche conformers when a short aliphatic segment is placed between two carbonyl groups.Spanish Ministry of Science and Innovation/CTQ2011-22923Spanish Ministry of Science and Innovation/CGL2011-2244
    • …
    corecore