216 research outputs found

    Structural and Magnetic Dynamics in the Magnetic Shape Memory Alloy Ni2_2MnGa

    Full text link
    Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni2_2MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.Comment: 5 pages, 3 figures. Supplementary materials 5 pages, 5 figure

    Ultrafast relaxation dynamics of the antiferrodistortive phase in Ca doped SrTiO3

    Full text link
    The ultrafast dynamics of the octahedral rotation in Ca:SrTiO3 is studied by time resolved x-ray diffraction after photo excitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO3, we observe a ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperaure despite large changes in the corresponding soft-mode frequency. A further, much smaller reduction on a slower picosecond timescale is attributed to thermal effects. Time-dependent density-functional-theory calculations show that the fast response can be ascribed to an ultrafast displacive modification of the soft-mode potential towards the normal state, induced by holes created in the oxygen 2p states

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure

    Motivation moderates gender differences in navigation performance.

    Get PDF
    Gender differences in navigation performance are a recurrent and controversial topic. Previous research suggests that men outperform women in navigation tasks and that men and women exhibit different navigation strategies. Here, we investigate whether motivation to complete the task moderates the relationship between navigation performance and gender. Participants learned the locations of landmarks in a novel virtual city. During learning, participants could trigger a top-down map that depicted their current position and the locations of the landmarks. During testing, participants were divided into control and treatment groups and were not allowed to consult the map. All participants were given 16 minutes to navigate to the landmarks, but those in the treatment group were monetarily penalized for every second they spent completing the task. Results revealed a negative relationship between physiological arousal and the time required to locate the landmarks. In addition, gender differences in strategy were found during learning, with women spending more time with the map and taking 40% longer than men to locate the landmarks. Interestingly, an interaction between gender and treatment group revealed that women in the control group required more time than men and women in the treatment group to retrieve the landmarks. During testing, women in the control group also took more circuitous routes compared to men in the control group and women in the treatment group. These results suggest that a concurrent and relevant stressor can motivate women to perform similarly to men, helping to diminish pervasive gender differences found in the navigation literature

    Ultrafast structural dynamics of the Fe-pnictide parent compound BaFe2As2

    Full text link
    Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A1g phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflections with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data we derive the electron-phonon deformation potential for this particular mode. The value of Delta mu/Delta z = -(1.0 - 1.5) eV/A is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides.Comment: 5 pages, 4 figures, Supplementary materia

    Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction

    Full text link
    We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in "local epitaxy" whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. The structural evolution is discussed in relation with the magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200

    Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu

    Get PDF
    We have theoretically studied the stability and reconstruction of (111) surfaces of Au, Pt, and Cu. We have calculated the surface energy, surface stress, interatomic force constants, and other relevant quantities by ab initio electronic structure calculations using the density functional theory (DFT), in a slab geometry with periodic boundary conditions. We have estimated the stability towards a quasi-one-dimensional reconstruction by using the calculated quantities as parameters in a one-dimensional Frenkel-Kontorova model. On all surfaces we have found an intrinsic tensile stress. This stress is large enough on Au and Pt surfaces to lead to a reconstruction in which a denser surface layer is formed, in agreement with experiment. The experimentally observed differences between the dense reconstruction pattern on Au(111) and a sparse structure of stripes on Pt(111) are attributed to the details of the interaction potential between the first layer of atoms and the substrate.Comment: 8 pages, 3 figures, submitted to Physical Review
    corecore