The ultrafast dynamics of the octahedral rotation in Ca:SrTiO3 is studied by
time resolved x-ray diffraction after photo excitation over the band gap. By
monitoring the diffraction intensity of a superlattice reflection that is
directly related to the structural order parameter of the soft-mode driven
antiferrodistortive phase in Ca:SrTiO3, we observe a ultrafast relaxation on a
0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be
independent of the initial temperaure despite large changes in the
corresponding soft-mode frequency. A further, much smaller reduction on a
slower picosecond timescale is attributed to thermal effects. Time-dependent
density-functional-theory calculations show that the fast response can be
ascribed to an ultrafast displacive modification of the soft-mode potential
towards the normal state, induced by holes created in the oxygen 2p states