32 research outputs found

    Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture

    Get PDF
    Ultra-violet (UV) and blue radiations are perceived by plants through several photoreceptors. They regulate a large range of processes throughout plant life. Along with red radiations, they are involved in diverse photomorphogenic responses, e.g., seedling development, branching or flowering. In this paper, we present an overview of UV- and blue-radiations signaling pathways in some key physiological processes and describe effects of plant exposure to these wavelengths on phenotype as well as on contents in useful metabolites and resistance to bio aggressors. Taking these knowledge into account, we finally discuss possible applications of the use of such radiations to improve plant production in horticulture

    Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed.

    Get PDF
    In Arabidopsis thaliana, proanthocyanidins (PAs) accumulate in the innermost cell layer of the seed coat (i.e. endothelium, chalaza and micropyle). The expression of the biosynthetic genes involved relies on the transcriptional activity of R2R3-MYB and basic helix-loop-helix (bHLH) proteins which form ternary complexes (\u27MBW\u27) with TRANSPARENT TESTA GLABRA1 (TTG1) (WD repeat protein). The identification of the direct targets and the determination of the nature and spatio-temporal activity of these MBW complexes are essential steps towards a comprehensive understanding of the transcriptional mechanisms that control flavonoid biosynthesis. In this study, various molecular, genetic and biochemical approaches were used. Here, we have demonstrated that, of the 12 studied genes of the pathway, only dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), BANYULS (BAN), TRANSPARENT TESTA 19 (TT19), TT12 and H(+) -ATPase isoform 10 (AHA10) are direct targets of the MBW complexes. Interestingly, although the TT2-TT8-TTG1 complex plays the major role in developing seeds, three additional MBW complexes (i.e. MYB5-TT8-TTG1, TT2-EGL3-TTG1 and TT2-GL3-TTG1) were also shown to be involved, in a tissue-specific manner. Finally, a minimal promoter was identified for each of the target genes of the MBW complexes. Altogether, by answering fundamental questions and by demonstrating or invalidating previously made hypotheses, this study provides a new and comprehensive view of the transcriptional regulatory mechanisms controlling PA and anthocyanin biosynthesis in Arabidopsis

    A new system for fast and quantitative analysis of heterologous gene expression in plants

    Get PDF
    Large-scale analysis of transcription factor–cis-acting element interactions in plants, or the dissection of complex transcriptional regulatory mechanisms, requires rapid, robust and reliable systems for the quantification of gene expression.Here, we describe a new system for transient expression analysis of transcription factors, which takes advantage of the fast and easy production and transfection of Physcomitrella patens protoplasts, coupled to flow cytometry quantification of a fluorescent protein (green fluorescent protein). Two small-sized and high-copy Gateway® vectors were specifically designed, although standard binary vectors can also be employed. As a proof of concept, the regulation of BANYULS (BAN), a key structural gene involved in proanthocyanidin biosynthesis in Arabidopsis thaliana seeds, was used. In P. patens, BAN expression is activated by a complex composed of three proteins (TT2/AtMYB123, TT8/bHLH042 and TTG1), and is inhibited by MYBL2, a transcriptional repressor, as in Arabidopsis. Using this approach, two new regulatory sequences that are necessary and sufficient for specific BAN expression in proanthocyanidin-accumulating cells were identified. This one hybrid-like plant system was successfully employed to quantitatively assess the transcriptional activity of four regulatory proteins, and to identify their target recognition sites on the BAN promoter

    Interplay of Sugar, Light and Gibberellins in Expression of Rosa hybrida Vacuolar Invertase 1 Regulation

    Get PDF
    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5′ deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell’s response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the –595 to –468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between –595 and –468 bp is critical for light and sugar and light and gibberellins to act synergistically

    Impacts of contrasting light on bud burst and on RwMAX1 and RwMAX2 expression in rose

    Get PDF
    Bud burst is a crucial factor in plant architecture and is strongly induced by light. In Rosa sp., this light effect was correlated with the growth of axillary buds and RwMAX1 and RwMAX2 expression within buds. In this paper, we investigated whether strigolactone pathway is involved in the regulation of axillary bud in response to light intensity. Hence, young roses were subjected to two contrasting light intensity regimes: high/high and high/low. The phenotype was characterized in both conditions and the expression of RwMAX1 and RwMAX2 genes was measured in the basal, middle and apical parts of rose primary branch. Light treatments showed a strong impact on axillary bud. The percentage of bud burst was severely reduced in the treatment high/low compared to the treatment high/high in all branch parts. In addition, the expression of RwMAX1 and RwMAX2 was strongly inhibited by high/high light regime and was conversely correlated with the rate of bud burst. In in vitro-grown axillary buds supplied with sucrose, glucose and fructose, RwMAX1 expression was significantly stimulated whereas that of RwMAX2 was significantly inhibited. Our results suggest that although RwMAX1 and RwMAX2 expression can be regulated by light, this expression does not explain the ability of bud burst

    Insight into the Role of Sugars in Bud Burst Under Light in the Rose

    Get PDF
    Bud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst. Full-length cDNAs encoding two vacuolar invertases (RhVI1 and RhVI2) were isolated from buds. Unlike RhVI2, RhVI1 was preferentially expressed in bursting buds, and was up-regulated in buds of beheaded plants exposed to light. To assess the importance of sugars in this process, the expression of RhVI1 and RhVI2 and the total vacuolar invertase activity were further characterized in buds cultured in vitro on 100 mM sucrose or mannitol under light or in darkness for 48 h. Unlike mannitol, sucrose promoted the stimulatory effect of light on both RhVI1 expression and vacuolar invertase activity. This up-regulation of RhVI1 was rapid (after 6 h incubation) and was induced by as little as 10 mM sucrose or fructose. No effect of glucose was found. Interestingly, both 30 mM palatinose (a non-metabolizable sucrose analog) and 5 mM psicose (a non-metabolizable fructose analog) promoted the light-induced expression of RhVI1 and total vacuolar invertase activity. Sucrose, fructose, palatinose and psicose all promoted bursting of in vitro cultured buds under light. These findings indicate that soluble sugars contribute to the light effect on bud burst and vacuolar invertases, and can function as signaling entities

    Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis

    Get PDF
    TT8/bHLH042 is a key regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis thaliana. TT8 transcriptional activity has been studied extensively, and relies on its ability to form, with several R2R3-MYB and TTG1 (WD-Repeat protein), different MYB-bHLH-WDR (MBW) protein complexes. By contrast, little is known on how TT8 expression is itself regulated.Transcriptional regulation of TT8 expression was studied using molecular, genetic and biochemical approaches. Functional dissection of the TT8 promoter revealed its modular structure. Two modules were found to specifically drive TT8 promoter activity in PA- and anthocyanin-accumulating cells, by differentially integrating the signals issued from different regulators, in a spatio-temporal manner. Interestingly, this regulation involves at least six different MBW complexes, and an unpredicted positive feedback regulatory loop between TT8 and TTG2. Moreover, the results suggest that some putative new regulators remain to be discovered. Finally, specific cis-regulatory elements through which TT8 expression is regulated were identified and characterized. Together, these results provide a molecular model consistent with the specific and highly regulated expression of TT8. They shed new light into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation in Arabidopsis and other plant species

    Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida

    Get PDF
    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar
    corecore