1,993 research outputs found

    The Integral Burst Alert System (IBAS)

    Full text link
    We describe the INTEGRAL Burst Alert System (IBAS): the automatic software for the rapid distribution of the coordinates of the Gamma-Ray Bursts detected by INTEGRAL. IBAS is implemented as a ground based system, working on the near-real time telemetry stream. During the first six months of operations, six GRB have been detected in the field of view of the INTEGRAL instruments and localized by IBAS. Positions with an accuracy of a few arcminutes are currently distributed by IBAS to the community for follow-up observations within a few tens of seconds of the event.Comment: 7 pages, latex, 5 figures, Accepted for publication on A&A Special Issue on First Science with INTEGRA

    Real time localization of Gamma Ray Bursts with INTEGRAL

    Get PDF
    The INTEGRAL satellite has been successfully launched in October 2002 and has recently started its operational phase. The INTEGRAL Burst Alert System (IBAS) will distribute in real time the coordinates of the GRBs detected with INTEGRAL. After a brief introduction on the INTEGRAL instruments, we describe the main IBAS characteristics and report on the initial results. During the initial performance and verification phase of the INTEGRAL mission, which lasted about two months, two GRBs have been localized with accuracy of about 2-4 arcmin. These observations have allowed us to validate the IBAS software, which is now expected to provide quick (few seconds delay) and precise (few arcmin) localization for about 10-15 GRBs per year.Comment: 6 pages, latex, 3 figures, submitted to Adv. Sp. Res., Proceedings of the 34th COSPAR Scientific Assembly, Houston, 10-19 October 200

    INTEGRAL high energy behaviour of 4U 1812-12

    Full text link
    The low mass X-ray binary system 4U 1812-12 was monitored with the INTEGRAL observatory in the period 2003-2004 and with BeppoSAX on April 20, 2000. We report here on the spectral and temporal analysis of both persistent and burst emission. The full data set confirms the persistent nature of this burster, and reveals the presence of emission up to 200 keV. The persistent spectrum is well described by a comptonization (CompTT) model plus a soft blackbody component. The source was observed in a hard spectral state with a 1-200 keV luminosity of 2*10^(36) ergs/s and L/LEdd~1% and no meaningful flux variation has been revealed, as also confirmed by a 2004 RXTE observation. We have also detected 4 bursts showing double peaked profiles and blackbody spectra with temperatures ranging from 1.9 to 3.1 keV.Comment: 6 pages, 4 figures. Accepted for publication by A&

    Models for Modules

    Full text link
    We recall the structure of the indecomposable sl(2) modules in the Bernstein-Gelfand-Gelfand category O. We show that all these modules can arise as quantized phase spaces of physical models. In particular, we demonstrate in a path integral discretization how a redefined action of the sl(2) algebra over the complex numbers can glue finite dimensional and infinite dimensional highest weight representations into indecomposable wholes. Furthermore, we discuss how projective cover representations arise in the tensor product of finite dimensional and Verma modules and give explicit tensor product decomposition rules. The tensor product spaces can be realized in terms of product path integrals. Finally, we discuss relations of our results to brane quantization and cohomological calculations in string theory.Comment: 18 pages, 6 figure

    Discovery of a Transition to Global Spin-up in EXO 2030+375

    Full text link
    EXO 2030+375, a 42-second transient X-ray pulsar with a Be star companion, has been observed to undergo an outburst at nearly every periastron passage for the last 13.5 years. From 1994 through 2002, the global trend in the pulsar spin frequency was spin-down. Using RXTE data from 2003 September, we have observed a transition to global spin-up in EXO 2030+375. Although the spin frequency observations are sparse, the relative spin-up between 2002 June and 2003 September observations, along with an overall brightening of the outbursts since mid 2002 observed with the RXTE ASM, accompanied by an increase in density of the Be disk, indicated by infrared magnitudes, suggest that the pattern observed with BATSE of a roughly constant spin frequency, followed by spin-up, followed by spin-down is repeating. If so this pattern has approximately an 11 year period, similar to the 15 +/- 3 year period derived by Wilson et al. (2002) for the precession period of a one-armed oscillation in the Be disk. If this pattern is indeed repeating, we predict a transition from spin-up to spin-down in 2005.Comment: Accepted for publication in ApJ Letters, 4 pages, 5 figures, using emulateapj.cl

    In-flight calibration of the INTEGRAL/IBIS mask

    Full text link
    Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS imaging procedure, leading to an improvement of the sensitivity around bright sources up to a factor of 7. This module excludes in the deconvolution process the IBIS/ISGRI detector pixels corresponding to the projection of a bright source through mask elements affected by some defects. These defects are most likely associated with screws and glue fixing the IBIS mask to its support. Following these major improvements introduced in OSA 9, a second order correction is still required to further remove the residual noise, now at a level of 0.2-1% of the brightest source in the field of view. In order to improve our knowledge of the IBIS mask transparency, a calibration campaign has been carried out during 2010-2012. We present here the analysis of these data, together with archival observations of the Crab and Cyg X-1, that allowed us to build a composite image of the mask defects and to investigate the origin of the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able to point out a simple modification of the ISGRI analysis software that allows to significantly improve the quality of the images in which bright sources are detected at the edge of the field of view. Moreover, a refinement of the area excluded by the ghost busters module is considered, and preliminary results show improvements to be further tested. Finally, this study indicates further directions to be investigated for improving the ISGRI sensitivity, such as taking into account the thickness of the screws in the mask model or studying the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4 figures, see the PoS website for the full resolution versio

    INTEGRAL observations of the Large Magellanic Cloud region

    Full text link
    We present the preliminary results of the INTEGRAL survey of the Large Magellanic Cloud. The observations have been carried out in January 2003 (about 10^6 s) and January 2004 (about 4x10^5 s). Here we concentrate on the bright sources LMC X-1, LMC X-2, LMC X-3 located in our satellite galaxy, and on the serendipitous detections of the Galactic Low Mass X-ray Binary EXO 0748-676 and of the Seyfert 2 galaxy IRAS 04575-7537.Comment: 4 pages, 7 figures. To be published in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munic

    The Microchannel X-ray Telescope for the Gamma-Ray Burst mission SVOM

    Full text link
    We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cmsq, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.Comment: 12 pages, 8 figures, to be published in SPIE Astronomical Telescopes + Instrumentation, Montreal, June 201
    • …
    corecore