35 research outputs found

    Simulation of dilated heart failure with continuous flow circulatory support

    Get PDF
    Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/ without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery. © 2014 Wang et al

    Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments

    Get PDF
    Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed

    Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex

    No full text
    Aims Current criteria for cardiac resynchronization therapy (CRT) are restricted to patients with a wide QRS complex (>120 ms). Overall, only 30 of heart failure patients demonstrate a wide QRS complex, leaving the majority of heart failure patients without this treatment option. However, patients with a narrow QRS complex exhibit left ventricular (LV) mechanical dyssynchrony, as assessed with echocardiography. To further elucidate the possible beneficial effect of CRT in heart failure patients with a narrow QRS complex, this two-centre, non-randomized observational study focused on different echocardiographic parameters of LV mechanical dyssynchrony reflecting atrioventricular, interventricular and intraventricular dyssynchrony, and the response to CRT in these patients. Methods and results A total of 123 consecutive heart failure patients with a narrow QRS complex (<120 ms) undergoing CRT was included at two centres. Several widely accepted measures of mechanical dyssynchrony were evaluated: LV filling ratio (LVFT/RR), LV pre-ejection time (LPEI), interventricular mechanical dyssynchrony (IVMD), opposing wall delay (OWD), and anteroseptal posterior wall delay with speckle tracking (ASPWD). Response to CRT was defined as a reduction ≥15 in left ventricular end-systolic volume at 6 months follow-up. Measures of dyssynchrony can frequently be observed in patients with a narrow QRS complex. Nonetheless, for LVFT/RR, LPEI, and IVMD, presence of predefined significant dyssynchrony is <20. Significant intraventricular dyssynchrony is more widely observed in these patients. With receiver operator characteristic curve analyses, both OWD and ASPWD demonstrated usefulness in predicting response to CRT in narrow QRS patients with a cut-off value of 75 and 107 ms, respectively. Conclusion Mechanical dyssynchrony can be widely observed in heart failure patients with a narrow QRS complex. In particular, intraventricular measures of mechanical dyssynchrony may be useful in predicting LV reverse remodelling at 6 months follow-up in heart failure patients with a narrow QRS complex, but with more stringent cut-off values than currently used in 'wide' QRS patients. © 2010 The Author
    corecore