10,238 research outputs found

    Program on stimulating operational private sector use of Earth observation satellite information

    Get PDF
    Ideas for new businesses specializing in using remote sensing and computerized spatial data systems were developd. Each such business serves as an 'information middleman', buying raw satellite or aircraft imagery, processing these data, combining them in a computer system with customer-specific information, and marketing the resulting information products. Examples of the businesses the project designed are: (1) an agricultural facility site evaluation firm; (2) a mass media grocery price and supply analyst and forecaster; (3) a management service for privately held woodlots; (4) a brokerage for insulation and roofing contractors, based on infrared imagery; (5) an expanded real estate information service. In addition, more than twenty-five other commercially attractive ideas in agribusiness, forestry, mining, real estate, urban planning and redevelopment, and consumer information were created. The commercial feasibility of the five business was assessed. This assessment included market surveys, revenue projections, cost analyses, and profitability studies. The results show that there are large and enthusiastic markets willing to pay for the services these businesses offer, and that the businesses could operate profitably

    A New Proposal for the Picture Changing Operators in the Minimal Pure Spinor Formalism

    Full text link
    Using a new proposal for the "picture lowering" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green's function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.Comment: 56 pages, typos correcte

    Searches for Lepton Flavour Violation at a Linear Collider

    Get PDF
    We investigate the prospects for detection of lepton flavour violation in sparticle production and decays at a Linear Collider (LC), in models guided by neutrino oscillation data. We consider both slepton pair production and sleptons arising from the cascade decays of non-leptonic sparticles. We study the expected signals when lepton-flavour-violating (LFV) interactions are induced by renormalization effects in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), focusing on the subset of the supersymmetric parameter space that also leads to cosmologically interesting values of the relic neutralino LSP density. Emphasis is given to the complementarity between the LC, which is sensitive to mixing in both the left and right slepton sectors, and the LHC, which is sensitive primarily to mixing in the right sector. We also emphasize the complementarity between searches for rare LFV processes at the LC and in low-energy experiments.Comment: 19 pages, 10 figure

    Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification

    Get PDF
    The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments

    Get PDF
    Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    ENSO-Induced Co-Variability of Salinity, Plantkton Biomass and Coastal Currents in the Northern Gulf of Mexico

    Get PDF
    The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observations, here we show that El Niño - Southern Oscillation (ENSO) is a main driver of the interannual variability in salinity and plankton biomass during winter and spring. Composite analysis of salinity and plankton biomass anomalies shows a strong asymmetry between El Niño and La Niña impacts, with much larger amplitude and broader areas affected during El Niño conditions. Further analysis of the model simulation reveals significant coastal circulation anomalies driven by changes in salinity and winds. The coastal circulation anomalies in turn largely determine the spatial extent and distribution of the ENSO-induced plankton biomass variability. These findings highlight that ENSO-induced changes in salinity, plankton biomass, and coastal circulation across the northern GoM are closely interlinked and may significantly impact the abundance and distribution of fish and invertebrates

    The use of full-setting non-invasive ventilation in the home care of people with amyotrophic lateral sclerosis-motor neuron disease with end-stage respiratory muscle failure: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Little has been written about the use of non-invasive ventilation in the home care of amyotrophic lateral sclerosis-motor neuron disease patients with end-stage respiratory muscle failure. Nocturnal use of non-invasive ventilation has been reported to improve daytime blood gases but continuous non-invasive ventilation dependence has not been studied in this regard. There continues to be great variation by country, economics, physician interest and experience, local concepts of palliation, hospice requirements, and resources available for home care. We report a case series of home-based amyotrophic lateral sclerosis-motor neuron disease patients who refused tracheostomy and advanced non-invasive ventilation to full-setting, while maintaining normal alveolar ventilation and oxygenation in the course of the disease. Since this topic has been presented in only one center in the United States and nowhere else, it is appropriate to demonstrate that this can be done in other countries as well.</p> <p>Case presentation</p> <p>We present here the cases of three Caucasian patients (a 51-year-old Caucasian man, a 45-year-old Caucasian woman and a 57-year-old Caucasian woman) with amyotrophic lateral sclerosis who developed continuous non-invasive ventilation dependence for 15 to 27 months without major complications and were able to maintain normal CO<sub>2 </sub>and pulse oxyhemoglobin saturation despite a non-measurable vital capacity. All patients were wheelchair-dependent and receiving riluzole 50 mg twice a day. Patient one developed mild-to-moderate bulbar-innervated muscle weakness. He refused tracheostomy but accepted percutaneous gastrostomy. Patient two had two lung infections, acute bronchitis and pneumonia, which were treated with antibiotics and cough assistance at home. Patient three had three chest infections (bronchitis and pneumonias) and asthmatic episodes treated with antibiotics, bronchodilators and cough assistance at home. All patients had normal speech while receiving positive pressure; they died suddenly and with normal oxygen saturation.</p> <p>Conclusions</p> <p>Although warned that prognosis was poor as vital capacity diminished, our patients survived without invasive airway tubes and despite non-measurable vital capacity. No patient opted for tracheostomy. Our patients demonstrate the feasibility of resorting to full-setting non-invasive management to prolong survival, optimizing wellness and management at home, and the chance to die peacefully.</p
    corecore