134 research outputs found

    Adakite-like granitoids of Songkultau: A relic of juvenile Cambrian arc in Kyrgyz Tien Shan

    Get PDF
    The early Paleozoic Terskey Suture zone, located in the southern part of the Northern Tien Shan domain in Kyrgyzstan, comprises tectonic slivers of dismembered ophiolites and associated primitive volcanics and deep-marine sediments. In the Lake Songkul area, early-middle Cambrian pillow basalts are crosscut by the Songkultau intrusion of coarse-grained gneissose quartz diorites and tonalites with geochemical characteristics typical for high-SiO2 adakites (SiO2 ​> ​56 ​wt.%, Al2O3 ​> ​15 ​wt.%, Na2O ​> ​3.5 ​wt.% and high Sr/Y and La/Yb ratios). The Songkultau granitoids have positive initial εNd (+3.8 to +6.4) and εHf (+12.3 to +13.5) values indicating derivation from sources with MORB-like isotopic signature. Volcanic formations, surrounding the Songkultau intrusion, have geochemical affinities varying from ocean floor to island arc series. This rock assemblage is interpreted as a relic of an early-middle Cambrian primitive arc where the adakite-like granitoids were derived from partial melting of young and hot subducted oceanic crust. An age of 505 ​Ma, obtained for the Songkultau intrusion, shows that hot subduction under the Northern Tien Shan continued until middle Cambrian. The primitive arc complexes were obducted onto the Northern Tien Shan domain, where the Andean type continental magmatic arc developed in Cambrian and Ordovician. Formation of the Andean type arc was accompanied by uplift, erosion and deposition of coarse clastic sediments. A depositional age of ca. 470 Ma, obtained for the gravellites in the Lake Songkul area, is in agreement with the timing of deposition for lower Ordovician conglomerates elsewhere in the Northern Tien Shan, and corresponds to the main phase of the Andean type magmatism. The Songkultau adakites in association with surrounding ocean floor and island arc formations constitute a relic of a primitive Cambrian arc and represent a juvenile domain of substantial size identified so far within the predominantly crustal-derived terranes of Tien Shan. On a regional scale this primitive arc can be compared with juvenile Cambrian arcs of Kazakhstan, Gorny Altai and Mongolia.©2020 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Low-Temperature Thermochronology of the Chatkal-Kurama Terrane (Uzbekistan-Tajikistan): Insights Into the Meso-Cenozoic Thermal History of the Western Tian Shan

    Get PDF
    The Chatkal-Kurama terrane represents a key region in understanding the tectonic evolution of the western Tian Shan. In this contribution, we present new thermochronological data (zircon [U-Th-Sm]/He, apatite fission track, and apatite [U-Th-Sm]/He) and the associated thermal history models for 30 igneous samples from the Chatkal-Kurama terrane within Uzbekistan and Tajikistan (west of the Talas-Fergana Fault) and integrate our data with published data from the central Tian Shan (east of the Talas-Fergana Fault). The Chatkal-Kurama terrane experienced a phase of rapid cooling during the Triassic-Jurassic at ca. 225–190 Ma, which we interpret as a far-field response to the closure of the Palaeo-Asian Ocean or the accretion of the Qiangtang terrane on to the Eurasian margin. In the Late Jurassic to the Early Cretaceous, the Chatkal-Kurama terrane experienced a period of tectonic stability and denudation, before transitioning into a period of marine incursions of the Paratethys Sea. In contrast, fast cooling is recorded for the Kyrgyz central Tian Shan to the east of the Talas-Fergana Fault. The differing thermal histories at either side of the Talas-Fergana Fault suggest that the fault induced a topographic divide during the Late Jurassic-Early Cretaceous, with high relief in the east (Kyrgyz Tian Shan) and low relief to the west (Uzbek-Tajik Tian Shan). Finally, the Chatkal-Kurama terrane experienced renewed tectonic activity since ca. 30 Ma, related with the distant India-Eurasia collision and Pamir indentation. The Cenozoic reactivation induced crustal tilting of the Chatkal-Kurama terrane, progressively exposing deeper rocks to the southwest

    Tracking the Cretaceous transcontinental Ceduna River through Australia: the hafnium isotope record of detrital zircons from offshore southern Australia

    Get PDF
    The middle–upper Cretaceous Ceduna River system traversed continental Australia from the NE coast to the centre of the southern coast. At its mouth, it formed a vast delta system that is similar in scale to the Niger delta of West Africa. The delta system is composed of two main lobes that represent different phases of delta construction. A recent hypothesis has challenged the traditional idea that both lobes of the delta were derived from a transcontinental river system by suggesting that the upper lobe (Santonian–Maastrichtian) is instead derived from a restricted catchment within southern Australia. Hf isotopic data presented here fingerprint the original source of the upper delta lobe zircons to NE Australia, with data comparing well with similar U-Pb and Lu-Hf isotopic data from the Lachlan Orogen, the New England Orogen, the eastern Musgraves Province and the northern Flinders Ranges. These data do not preclude a model where the lobe is derived from recycled Eromanga Basin sediments during a phase of late Cretaceous inland Australian uplift, but when coupled with reconnaissance low-temperature thermochronometry from the region of the Ceduna River course indicating widespread Triassic–Jurassic exhumation, and comparisons with detrital zircon data from the Winton Formation upstream of any proposed uplift, we suggest that both lobes of the Ceduna Delta are likely to be derived from a transcontinental Ceduna River.Jarred Lloyd, Alan S. Collins, Justin L. Payne, Stijn Glorie, Simon Holford, Anthony J. Rei

    Evaluating the multiple-sulfur isotope signature of Eoarchean rocks from the Isua Supracrustal Belt (Southwest-Greenland) by MC-ICP-MS : volcanic nutrient sources for early life

    Get PDF
    Funding: Australian Research Council - FT210100906; Natural Environment Research Council - NE/V010824/1.On the anoxic Archean Earth, prior to the onset of oxidative weathering, electron acceptors were relatively scarce, perhaps limiting microbial productivity. An important metabolite may have been sulfate produced during the photolysis of volcanogenic SO2 gas. Multiple sulfur isotope data can be used to track this sulfur source, and indeed this record indicates SO2 photolysis dating back to at least 3.7 Ga, that is, as far back as proposed evidence of life on Earth. However, measurements of multiple sulfur isotopes in some key strata from that time can be challenging due to low sulfur concentrations. Some studies have overcome this challenge with NanoSIMS or optimized gas-source mass spectrometry techniques, but those instruments are not readily accessible. Here, we applied an aqua regia leaching protocol to extract small amounts of sulfur from whole rocks for analyses of multiple sulfur isotopes by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Measurements of standards and replicates demonstrate good precision and accuracy. We applied this technique to meta-sedimentary rocks with putative biosignatures from the Eoarchean Isua Supracrustal Belt (ISB, >3.7 Ga) and found positive ∆33S (1.40–1.80‰) in four meta-turbidites and negative ∆33S (−0.80‰ and −0.66‰) in two meta-carbonates. Two meta-basalts do not display significant mass-independent fractionation (MIF, −0.01‰ and 0.16‰). In situ Re–Os dating on a molybdenite vein hosted in the meta-turbidites identifies an early ca. 3.7 Ga hydrothermal phase, and in situ Rb–Sr dating of micas in the meta-carbonates suggests metamorphism affected the rocks at ca. 2.2 and 1.7 Ga. We discuss alteration mechanisms and conclude that there is most likely a primary MIF-bearing phase in these meta-sediments. Our new method is therefore a useful addition to the geochemical toolbox, and it confirms that organisms at that time, if present, may indeed have been fed by volcanic nutrients.Peer reviewe

    Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins

    Get PDF
    Available online 26 May 2023Fluorite (CaF2) is a common hydrothermal mineral, which precipitates from fluorine-rich fluids with an exceptional capacity to transport metals and Rare Earth Elements (REEs). Hence, the ability to date fluorite has important implications for understanding the timing of metal transport in hydrothermal systems. Here we present, for the first time, fluorite Lu-Hf dates from fluorite-carbonate veins from the Olympic Cu-Au Province in South Australia. The fluorite dates were obtained in situ using the recently developed LA-ICP-MS/MS Lu-Hf dating method. A fluorite-calcite age of 1588 ± 19 Ma was obtained for the Torrens Dam prospect, consistent with the timing of the formation of the nearby Olympic Dam iron-oxide copper gold Breccia Complex. Veins in the overlying Neoproterozoic successions were dated at 502 ± 14 Ma, indicating a temporal link between Cu-sulphide remobilisation and the Delamerian Orogeny. Additionally, we present a multi-session reproducible date for magmatic fluorite from a monzogranite in the Pilbara Craton (Lu-Hf age of 2866 ± 19 Ma). This age is consistent with a garnet Lu-Hf age from the same sample (2850 ± 12 Ma) and holds potential to be developed into secondary reference material for future fluorite Lu-Hf dating.Stijn Glorie, Jacob Mulder, Martin Hand, Adrian Fabris, Alexander Simpson, Sarah Gilber

    An apatite U-Pb thermal history map for the northern Gawler Craton, South Australia

    Get PDF
    Abstract not availableJames W. Hall, Stijn Glorie, Anthony J. Reid, Samuel C. Boone, Alan S. Collins, Andrew Gleado

    U–Pb zircon-rutile dating of the Llangynog Inlier, Wales: constraints on an Ediacaran shallow marine fossil assemblage from East Avalonia

    Get PDF
    The Llangynog Inlier of south Wales contains an assemblage of Ediacaran macrofossils from a shallow-marine environment, including discoidal morphs of Aspidella and rare examples of Hiemalora, Palaeopascichnus and Yelovichnus. These are taxa found in other sites in the Avalonian microcontinent (e.g. Charnwood Forest and eastern Newfoundland) and in the younger White Sea Ediacaran assemblages. As the Charnwood fossils reflect a deep-water environment, and no macrofossils have been found in the Ediacaran rocks of the Long Mynd, the fossils of the Llangynog Inlier represent a unique glimpse of shallow marine life in southern Britain (East Avalonia). However, the lack of absolute age constraints has hampered direct comparison with other assemblages. Here, we report in-situ zircon and rutile U–Pb dates from a rhyolitic ash-flow layer of the Coed Cochion Volcaniclastic Member, Llangynog Inlier, which constrains the age of the fossiliferous strata. A weighted mean single grain zircon ID-TIMS U–Pb age of 564.09 ± 0.70 Ma is interpreted as the rhyolite's crystallisation age. This age is consistent with in-situ LA-ICPMS zircon and rutile U–Pb dating. The Llangynog age temporally correlates these fossils to dated horizons within East Avalonia at the Beacon Hill Formation, Charnwood (565.22 ± 0.89 Ma), and the Stretton Shale Formation, Long Mynd (566.6 ± 2.9 Ma). Correlations to West Avalonia include the time-equivalent Fermeuse Formation, St John’s Group, eastern Newfoundland (564.13 ± 0.65 Ma). The data presented here establish the biota of the Llangynog Inlier as a lateral equivalent to the similarly shallow marine, tidally influenced ecosystem of the upper Fermeuse Formation. Intra-terrane depositional environmental variability also affects what is preserved in Avalonian fossil sites. Further, time-constrained geochemical data reinforce the Llangynog Inlier's classification within the Wrekin Terrane

    Neoproterozoic tectonic geography of the south-east Congo Craton in Zambia as deduced from the age and composition of detrital zircons

    Get PDF
    Available online 10 August 2018The Southern Irumide Belt (SIB) is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other. The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton, and bears a Neoproterozoic tectono-thermal overprint relating to the Neoproterozoic–Cambrian collision between the Congo and Kalahari cratons. It preserves a record of about 500 million years of plate interaction along this part of the Congo margin. Detrital zircon samples from the SIB were analysed for U–Pb and Lu–Hf isotopes, as well as trace element compositions. These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar (Azania) and India. These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region. Detrital zircon samples from the Chewore–Rufunsa and Kacholola (previously referred to as Luangwa–Nyimba) terranes of the SIB yield zircon U–Pb age populations and evolved εHf(t) values that are similar to the Muva Supergroup found throughout eastern Zambia, primarily correlating with Ubendian–Usagaran (ca. 2.05–1.80 Ga) phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt. These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic. The more eastern Nyimba–Sinda terrane of the SIB (previously referred to as Petauke–Sinda terrane) records detrital zircon ages and εHf(t) values that correlate with ca. 1.1–1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt. We ascribe this difference in age populations to the polyphase development of the province, where the sedimentary and volcanic rocks of the Nyimba–Sinda terrane accumulated in extensional basins that developed in the Neoproterozoic. Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts, presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt. This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic, which ultimately closed during collision between the Congo and Kalahari cratons.Brandon L. Alessio, Alan S. Collins, Peter Siegfried, Stijn Glorie, Bert De Waele, Justin Payne, Donnelly B. Archibal
    corecore