184 research outputs found

    Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    Get PDF
    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided

    Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows

    Get PDF
    The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented

    Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    Get PDF
    The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented

    Turbulent mixing simulation via a quantum algorithm

    Get PDF
    Probability density function (PDF) methods have been very useful in describing many physical aspects of turbulent mixing. In applications of these methods, modeled PDF transport equations are commonly simulated via classical Monte Carlo techniques, which provide estimates of moments of the PDF at arbitrary accuracy. In this work, recently developed techniques in quantum computing and quantum enhanced measurements (quantum metrology) are used to construct a quantum algorithm that accelerates the computation of such estimates. This quantum algorithm provides a quadratic speedup over classical Monte Carlo methods in terms of the number of repetitions needed to achieve the desired precision. This paper illustrates the power of this algorithm by considering a binary scalar mixing process modeled by means of the coalescence/dispersion (C/D) closure. The equation is first simulated using classical Monte Carlo methods, where error estimates for the computation of central moments are provided. Then the quantum algorithm for this problem is simulated by sampling from the same probability distribution as that of the output of a quantum computer, and it is shown that significantly fewer resources are required to achieve the same precision. The results demonstrate potential applications of future quantum computers for simulation of turbulent mixing, and large classes of related problems

    Quantum algorithm for the computation of the reactant conversion rate in homogeneous turbulence

    Get PDF
    The rapid developments that have occurred in quantum computing platforms over the past few years raise important questions about the potential for applications of this new type of technology to fluid dynamics and combustion problems, and the timescales on which such applications might be possible. As a concrete example, here a quantum algorithm is developed and employed for predicting the rate of reactant conversion in the binary reaction of F + rO → (1 + r) in non-premixed homogeneous turbulence. These relations are obtained by means of a transported probability density function equation. The quantum algorithm is developed to solve this equation and is shown to yield the rate of the reactants' conversion much more efficiently than current classical methods, achieving a quadratic quantum speedup, in line with expectations for speedups arising from quantum metrology techniques more broadly. This provides an important example of a quantum algorithm with a real engineering application, which can build a connection to present work in turbulent combustion modelling and form the basis for further development of quantum computing platforms and their applications to fluid dynamics

    Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    Get PDF
    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers

    LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows

    Get PDF
    A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes

    LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    Get PDF
    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122

    Variational quantum algorithms for computational fluid dynamics

    Get PDF
    Quantum computing uses the physical principles of very small systems to develop computing platforms which can solve problems that are intractable on conventional supercomputers. There are challenges not only in building the required hardware but also in identifying the most promising application areas and developing the corresponding quantum algorithms. The availability of intermediate-scale noisy quantum computers is now propelling the developments of novel algorithms, with applications across a variety of domains, including in aeroscience. Variational quantum algorithms are particularly promising because they are comparatively noise tolerant and aim to achieve a quantum advantage with only a few hundred qubits. Furthermore, they are applicable to a wide range of optimization problems arising throughout the natural sciences and industry. To demonstrate the possibilities for the aeroscience community, we give a perspective on how variational quantum algorithms can be used in computational fluid dynamics. We discuss how classical problems are translated into quantum algorithms and their logarithmic scaling with problem size. For an explicit example, we apply this method to Burgers’s equation in one spatial dimension. We argue that a quantum advantage over classical computing methods could be achieved by the end of this decade if quantum hardware progresses as currently envisaged and emphasize the importance of joining up development of quantum algorithms with application-specific expertise to achieve a real-world impact

    Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    Get PDF
    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data
    • …
    corecore