
Turbulent Mixing Simulation via a Quantum

Algorithm

Guanglei Xua and Andrew J. Daleyb

University of Strathclyde, Glasgow G4 0NG, United Kingdom.

Peyman Givic

University of Pittsburgh, Pittsburgh, PA 15261, USA.

Rolando D. Sommad

Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

(Dated: July 30, 2017)

Probability density function (PDF) methods have been very useful in describing

many physical aspects of turbulent mixing. In applications of these methods, modeled

PDF transport equations are commonly simulated via classical Monte Carlo tech-

niques, which provide estimates of moments of the PDF at arbitrary accuracy. In

this work, we use recently developed techniques in quantum computing and quantum

enhanced measurements (quantum metrology) to construct a quantum algorithm that

accelerates the computation of such estimates. Our quantum algorithm provides a

quadratic speedup over classical Monte Carlo methods in terms of the number of

repetitions needed to achieve the desired precision. We illustrate the power of our

algorithm by considering a binary scalar mixing process modeled by means of the

coalescence/dispersion (C/D) closure. The equation is first simulated using classical

Monte Carlo methods, where we provide error estimates for the computation of central

moments. We then simulate the quantum algorithm for this problem by sampling

from the same probability distribution as that of the output of a quantum computer,

and show that significantly less resources are required to achieve the same precision.

a Ph.D. Candidate, Department of Physics and SUPA.
b Professor, Department of Physics and SUPA.
c Professor, Mechanical Engineering and Petroleum Engineering, AIAA Fellow.
d Staff member, Theoretical Division.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/153373527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our results demonstrate potential applications of future quantum computers for

simulation of turbulent mixing, and large classes of related problems.

Nomenclature

α = the random variable that determines the conditions of mixing

D = the conditional expected value of the scalar diffusion

E = the conditional expected value of the scalar dissipation

cU = a controlled unitary transformation matrix

ε = the precision of estimation

εC = the statistical error of classical Monte Carlo methods

εQ = the estimation error of quantum algorithm

Γ = the binary Fickian diffusion coefficient

µ̂l = the estimator of the l-th central moment of probability distribution

µ̂kl (tj) = the estimator of the l-th central moment of distribution of k-th realization, at time tj

σ̂µ4
= the estimated standard deviation associated with µ̂4

|0〉, |1〉 = eigenstates of computational basis of one qubit

|l〉 = a state in the computational basis, which l is the corresponding binary representation

µl(t) = the l-th central moment of probability distribution at time t

ω = the mixing frequency of binary scalar mixing problem

φ(x
¯
, t) = a Fickian scalar, where x

¯
is the position vector and t ≥ 0 represents time

φl, φu = the lower bound and upper bound of Fickian scalars

2

ψ = the composition domain of Fickian scalars φ

σ2 = the variance of random variables

σi = the Pauli matrices, i = 0, x, y, z

µ̃4 = the most accurate estimate of µ4 obtained, used as a normalization parameter in some

figures

A(α) = the probability density function of the random variable α

am = the m-th moments of the random variable α

b′i = the measurement outcome of i-th qubit in phase estimation algorithm

c = the confidence level of estimation

Np = the total number of simulation particles in classical Monte Carlo method

Nr = the total number of repetitions

Ns = the total number of mixing within one time step

Nt = the total number of time steps

P (ψ, t) = the single-point probability density function of the scalar ψ at time t

R(ν, θ) = unitary rotation matrices along certain axis on Bloch sphere, ν = x, y, z

BPP = bounded-error probabilistic polynomial time, a class of problems in computational com-

plexity theory

BQP = bounded-error quantum polynomial time, a class of problems in computational complex-

ity theory

CNOT = Controlled-NOT gate

3

I. Introduction

Large quantum computers could provide answers to problems that are believed to be otherwise

intractable (c.f. [1]). Particularly, in recent years, there has been significant interest in the devel-

opment of quantum algorithms to speed up classical Monte Carlo (MC) techniques [2–10]. As MC

techniques are used ubiquitously in science, the existence of large-scale quantum computers has the

potential to revolutionize computation across a wide range of disciplines. As hardware for quantum

computing undergoes continued rapid development [11–18], an important step is to ask what im-

pact such new methods might have in different disciplines, and to identify specific examples where

there can be a large impact of this emerging technology. Here we aim to bring together research in

quantum computing with fluids engineering, by identifying a general class of problems relevant to

turbulent flows that can be sped up on a quantum computer. This class of algorithms can act as a

starting point for further algorithmic development, and to begin to answer detailed questions about

the quantum hardware necessary to run algorithms for aerospace applications.

In fluid mechanics, classical MC methods have been widely used for turbulence simulation; in

particular for description of turbulent scalar mixing (with or without chemical reactions). Under-

standing the mixing phenomenon has been a subject of broad interest for the past fifty years in

various disciplines of engineering [19–27]. The underlying basic physics is explicitly captured by

probability density function (PDF) methods in the contexts of both Reynolds averaged Navier-

Stokes (RANS) [28, 29] and large eddy simulation (LES) [30, 31]. In the setting of a spatially

homogeneous flow, the temporal evolution of the scalar PDF isolates the physical features pertain-

ing to mixing transport. In this setting, in addition to the accuracy of its closure, the computational

efficiency of the PDF simulator is of significant importance.

Classical MC methods have been the primary means of solving PDF transport equations [32–

34]. With these methods, the PDF is represented by an ensemble of computational elements or

particles. The transport and the changes in the composition of these particles are made randomly

in a such a way as to mimic the (modeled) physics of the problem. The ensemble average of data

over these particles then determines the desired statistics. To obtain accurate results, a MC method

needs to be executed repeatedly many times. The complexity of MC depends on various parameters,

4

including the desired final precision ε � 1 and the confidence level of the estimation, c. When the

quantity to be estimated by the MC method has bounded moments, as is the case in turbulent

mixing, we can use Chebyshev’s inequality to obtain Nr, the number of MC runs needed to obtain

such an estimate. It is well known that Nr is of order σ2/ε2, where σ2 is the variance of the

random variable. (The dependence of Nr on the confidence level is only logarithmic in (1 − c)−1.)

The complexity dependence of MC on 1/ε2 is undesired and may not be avoided by using other

conventional techniques. Novel algorithms that have a better complexity dependence on 1/ε are

thus highly desirable.

Remarkably, quantum computers would allow us to achieve a quadratic complexity improvement

over the classical bound for certain problems. Recent results in “quantum metrology” (i.e., quantum

enhanced measurements) [5, 6, 35] demonstrate that quantum computers can provide a quadratic

improvement in the precision of certain estimations using the same number of resources as classical

computers. Equivalently, for the same precision, quantum computers would require quadratically

less resources than classical ones in these cases. These results are somewhat general in that they

allow us to estimate expected values of various quantities under minimal assumptions and within an

arbitrary confidence level [6]. The complexity overhead to achieve confidence c is also logarithmic

in (1− c)−1. Only recently these quantum-metrology based methods have been adapted to improve

upon the complexity of classical MC methods (c.f., [9]), but their potential application to specific

cases and their usefulness in those instances have not yet been investigated.

Here, we adapt the quantum metrology results of [6] to the setting of turbulent mixing flows

and present a quantum algorithm that is quadratically more efficient, in terms of the number of

repetitions, than MC methods. Our quantum algorithm can be used to simulate large classes of

turbulent mixing problems including those modeled by means of the coalescence/dispersion (C/D)

closure [36–38]. In more detail, we provide a quantum algorithm to compute properties of the PDF.

The precision of the estimation, ε, depends almost linearly on 1/Nr. Here, Nr refers to the number

of times a certain quantum state has to be prepared and can be compared to the number of times

a MC method is executed. Equivalently, for target precision ε, Nr has to be chosen to be of order

1/ε. Thus, the quantum algorithm provides a quadratic speedup over MC in terms of Nr to achieve

5

the same precision.

We demonstrate a specific application of our quantum algorithm by considering a simple bina-

ry scalar mixing process modeled by the C/D closure. While an analytical solution for the scalar

moments is possible in this case, our simulations illustrate what is possible and allow a quantitative

analysis of the corresponding statistical errors. The algorithm can then be used to attack more

general mixing processes. To understand the complexity of the classical algorithm, binary mixing

is then first simulated using classical MC methods, where we provide estimates and error bars for

the 4-th central moment of the PDF (the calculation of higher order moments can be performed

similarly). We then simulate the quantum algorithm using conventional techniques (as large quan-

tum computers do not yet exist) by sampling from the same probability distribution as that of the

measurement outcome of the quantum computer. Note that it would be impossible to simulate

the full quantum algorithm as the number of qubits (quantum bits) needed would be very large

and conventional simulations of quantum algorithms would require dealing with matrices that are

of dimension exponential in the number of qubits. This would limit conventional simulations of

quantum algorithms to about 40 qubits using supercomputers, and our quantum algorithms require

significantly many more qubits to be implemented. This reflects the clear differences between a

quantum computer, and classical computers. Nevertheless, the probability distribution associated

with the output of the quantum algorithm can be obtained precisely in this case due to the sim-

plicity of the problem, but this would not be possible for a more general case. The results of the

simulation of the quantum algorithm clearly show significantly (quadratically) smaller error bars

for the estimation of the 4-th central moment using the same value for Nr. A similar result would

hold for the computation of other properties of the PDF.

For simplicity, our quantum algorithms are described in a sequence of steps, each to estimate

different significant bits of the quantity of interest. It follows that the depth of the quantum circuits

is of order 1/ε. This seems to be a drawback with respect to classical MC methods that can

be trivially parallelized. However, we show that our quantum algorithms can also be parallelized,

resulting in quantum circuits of relatively short depth, and where the total number of qubits required

is linear in 1/ε.

6

This paper is organized as follows. In Sec. II we provide an introduction to turbulent scalar

mixing problems and describe the C/D closure. In Sec. III we discuss classical MC methods for

turbulent mixing, and taking a C/D model as an example, we implement MC to simulate binary

mixing as a demonstration. Previous to describing our quantum algorithm, in Sec. IV we provide

a brief overview of the required background concepts in quantum information. Then, in Sec. V,

we present our quantum algorithm to simulate the C/D model and provide the simulation results

of binary mixing to understand the advantages of the quantum algorithm with respect to MC. A

procedure for parallelizing the quantum algorithm is also presented in Sec. V. We finish with a

conclusion and outlook in Sec. VI.

II. Turbulent scalar mixing

In this section, we introduce the basic problem of turbulent scalar mixing by means of the

single-point PDF transport equation. In particular, we consider a homogeneous turbulent flow in

which the PDF closure problem is exhibited and present one model for the closure. We consider

the mixing of a Fickian scalar φ = φ(x
¯
, t), where x

¯
is the position vector and t ≥ 0 denotes time;

from an initially binary state within bounds φ` ≤ φ ≤ φu . The PDF of the scalar is P (ψ, t), where

ψ is the composition domain of φ. In homogeneous turbulent flows, where statistics are spatially

invariant, P (ψ, t) is governed by either of the two equations [26]:

∂P (ψ, t)

∂t
+
∂2 (EP (ψ, t))

∂ψ2
= 0 , (1)

∂P (ψ, t)

∂t
+
∂(DP (ψ, t))

∂ψ
= 0 . (2)

Here, E represents the expected value of the scalar dissipation conditioned on the scalar value φ(x
¯
, t)

and D denotes the conditional expected value of the scalar diffusion:

E(ψ, t) = E[Γ∇φ · ∇φ|φ(x
¯
, t) = ψ], D(ψ, t) = E[Γ∇2φ|φ(x

¯
, t) = ψ], (3)

where Γ is the binary Fickian diffusion coefficient. We use the standard notation where E[y] and

E[y|z] denote the expected value of a random variable y and the expected value conditioned on

an event z, respectively. With the single-point statistical descriptor P (ψ, t), the turbulence closure

problem is exhibited by the unknown conditional / unconditional dissipation, and/or the conditional

7

diffusion. A variety of models have been proposed and employed for the PDF closure [36–47]. This

remains as an area of active investigation and the search continues for a model that satisfies various

mixing scenarios [48]. The available models are either written in terms of a Langevin equation with

the corresponding Fokker-Planck equation describing the PDF, or via a phenomenological transport

equation for the PDF evolution [49].

For the purpose of demonstration, here we consider the family of coalescence/dispersion (C/D)

mixing models. The generalized C/D model is described by the evolution equation [37, 38]

∂P (ψ, t)

∂t
= −2βωP (ψ, t)

+ 2βω

∫
dψ′

∫
dψ′′P (ψ′, t)P (ψ′′, t)

∫ 1

0

dαA(α)δ[ψ − (1− α)ψ′ − 1

2
α(ψ′ + ψ′′)] , (4)

where δ(x) is the Dirac delta function, and A(α) is the PDF of the random variable α, 0 ≤ α ≤ 1.

The value of α determines the conditions of mixing. In particular, to obtain Curl’s model [50], we

choose A(α) = δ(α − 1); for the closure of Janicka et al. [36], A(α) = 1; and for the least mean

square estimation (LMSE) [28, 39], and the interaction by exchange with the mean (IEM) model

[51], A(α) = δ(α − ζ), with ζ → 0. The parameter ω is the mixing frequency and determines the

rate of variance decay. The parameter β depends on A(α) as follows:

β =
1

a1 − 1
2a2

, am =

∫ 1

0

dα αmA (α) . (5)

In this way, all C/D models have the same rate of variance decay.

The properties of the PDF can be described by the central moments, which are defined via

(l = 1, 2, . . .)

µl (t) = E[(ψ − E[ψ])
l
] . (6)

In certain cases, these moments can be obtained exactly – which will be useful here in demonstrating

the accuracy obtained by our algorithms. For the problem of binary scalar mixing, we take P (ψ, t =

0) = 1
2 [δ(ψ − φ`) + δ(ψ − φu)], and use Curl’s model with bounds φ` = −1, φu = 1. The central

8

moments can then be obtained exactly as:

µ1(t) = µ1(0) = 0 , (7)

µ2 (t) ≡ σ2 (t) = e−2ωt , (8)

µ3 (t) = µ3(0) = 0, (9)

µ4 (t) =
(
4eγωt − 3

)
e−4ωt , (10)

where

γ =
a2 + 1

4a4 − a3
a1 − 1

2a2
, (11)

and am are the m-th moments of the random variable α.

III. Monte Carlo methods for the C/D model

To simulate the C/D model [Eq. (4)] via a classical MC method, one chooses a number of

“particles” Np so that each particle has an associated random variable ψk(i, tj), where i = 1, . . . , Np,

j = 0, . . . , Nt, and k = 1, . . . , Nr. These particles are intended to simulate the different populations

of ψ. The variable tj refers to the time at the j-th step of the algorithm in any run, and tj = j∆t, for

some ∆t > 0. The algorithm is repeated Nr times to reach a desired accuracy. The total evolution

time t > 0, together with β and ω, are parameters defined by the physical properties of the system

(Sec. II). The parameters ∆t, Np, and Nr are “experimentally” determined depending on the desired

accuracy of the simulation and computing resources, or can be considered as inputs. The classical

MC algorithm is described in detailed as follows:

9

Input: P (ψ, 0), t, β, ω, ∆t, Np, Nr

1. Obtain Nt = dt/∆te, Ns = dβω∆tNpe. Set k = 1, j = 1, ns = 1, and t0 = 0.

2. Repeat until k > Nr:

2.1. For i = 1, . . . , Np, initialize ψk(i, 0) according to an initial probability distribution

Q(ψk(1, 0), . . . , ψk(Np, 0)).

2.2. Repeat until j > Nt:

2.2.1. Set tj = j∆t and ψk(i, tj) := ψk(i, tj−1) for all i ∈ {1, . . . , Np}.

2.2.2. Repeat until ns > Ns:

2.2.2.1. Obtain random integers i1, i2 ∈ {1, . . . , Np}.

2.2.2.2. Sample α ∈ [0, 1] according to the probability distribution A(α).

2.2.2.3. Perform the mixing transformation:

ψk(i1, tj)← (1− α)ψk(i1, tj) + α(ψk(i1, tj) + ψk(i2, tj))/2,

ψk(i2, tj)← (1− α)ψk(i2, tj) + α(ψk(i1, tj) + ψk(i2, tj))/2.

2.2.2.4. ns ← ns + 1.

2.2.3. j ← j + 1.

2.3. k ← k + 1:

3. Output: ψk(i, tj) for all k, i, tj .

The initial distribution Q(ψk(1, 0), . . . , ψk(Np, 0)) is independent of k and is chosen so that it

simulates P (ψ, 0) in the PDF transport equation. At any time, the distribution associated with

the MC method is Q(ψk(1, tj), . . . , ψ
k(Np, tj)). Then, the results of the MC method are used to

obtain an estimate of P (ψ, t) or estimate quantities such as the l-th central moment of ψ. To

obtain the simulated PDF, one technique is to build a histogram with the values of each ψk(i, tj)

for i = 1, . . . , Np, and then choose a corresponding (machine) precision ∆ψ and use a proper

10

normalization. Each MC run outputs a random vector (ψk(1, t), . . . , ψk(Np, t)) that is independent

for each k but its entries may be (slightly) correlated for each k.

The MC method can then be used to estimate different central moments of the distribution

P (ψ, t) as follows:

µ̂l(tj) :=
1

Nr

Nr∑

k=1

µ̂kl (tj) , (12)

with

µ̂kl (tj) :=
1

Np

Np∑

i=1

(
ψk(i, tj)− Ê[ψk(tj)]

)l
. (13)

We use the standard notation where X̂ denotes an estimator of X; in this case, Ê[ψk(tj)] is the

estimator of the expected value of ψk(i, tj):

Ê[ψk(tj)] :=
1

Np

Np∑

i=1

ψk(i, tj) . (14)

As described, the MC algorithm takes Nr as input and outputs all the ψk(i, tj). Straightforward

modifications of the algorithm would take a precision parameter ε as input and would output

certain properties of the PDF, such as the central moments with the corresponding error bounds

and confidence levels, rather than keeping all values of ψk(i, tj) in memory. Such algorithmic

modifications may render the algorithm more efficient.

A. Complexity

We study the complexity of the previous MC method. For simplicity, we disregard certain loga-

rithmic factors in the order notation. Disregarding the complexity of initializing ψk(1, 0), . . . , ψk(Np, 0)

and the complexity of sampling from A(α), the complexity of the MC method is mainly dominated

by the number of times the ψk(i, tj) have to be updated. This is O(Nr Nt Ns) = O(NrtβωNp).

Both Nr and Np are set to reach desired accuracy in the computation of the relevant quantities.

Under the assumptions on ψ, for fixed Np and fixed confidence level c, the overall precision ε is

then dependent on the number of repetitions Nr. Chebyshev’s inequality implies ε = O(1/
√
Nr).

For arbitrary values of c < 1, the overhead is only logarithmic in (1− c)−1 [52]. When considering

ε as an input, the complexity of the MC method is O(tβωNp/ε
2).

11

B. Example: Classical Monte Carlo simulations of binary mixing

To demonstrate the MC method and to give us a basis for comparison with our quantum

algorithm, we simulate a simple binary mixing problem whose solution can be analytically obtained.

This will facilitate the benchmarking of our algorithms and how they might be expected to perform

when applied to a complex problem where the solution is unknown. We consider Curl’s model,

where A(α) = δ(α − 1), and β = 2, γ = 0.5. The mixing frequency is set to ω = 1. The maximum

simulation time is t = 1 and the other parameters are set to ∆t = 0.1 and Np = 103. The initial

PDF is the binary state P (ψ, 0) = 1
2δ(ψ − 1) + 1

2δ(ψ + 1), and we simulate it by initially setting

ψk(i, 0) = −1 for all 1 ≤ i ≤ Np/2, and ψk(i, 0) = +1 otherwise. We can then use the MC method

to estimate the 4-th central moment as a function of time, as described in Sec. III. Since the known

analytical solution refers to the case where Np = ∞ and we need the solution for Np < ∞, we

perform a very accurate simulation for Np = 103 by repeating the MC method Nr = 220×60 times.

(The reason why we factor the coefficients in Nr will become clear when we discuss the quantum

algorithm.) The 4-th central moment of such an accurate estimate is µ̃4(t) and is obtained from the

simulation results using Eq. (12). We then use µ̂4(t) to denote the estimated 4-th central moment

for other smaller values of Nr, also obtained via Eq. (12).

The MC results are shown in Fig. 1. In Fig. 1 (a) we show the exponential decay µ̂4(t) as a

function of time for Nr = 210× 24. In Fig. 1 (b) we compare µ̂4(t) with µ̃4(t), which is very close to

the exact solution for Np = 103. Note that Ê[ψk(tj)] = 0 in this case [see Eq. (14)]. To obtain the

error bars of Fig. 1 (b), we first computed µ̂k4(tj) for each run k = 1, . . . , Nr, according to Eq. (13).

Then, the estimated standard deviation associated with µ̂4(t) is

σ̂µ4
(tj) =

[∑Nr
k=1(µ̂k4(tj)− µ̂4(tj))

2

(Nr − 1)

]1/2
. (15)

An estimate of µ4(t) within εC(tj) = 3σ̂µ4
(tj) allows us to reach 99.75% confidence level. The error

bars of Fig. 1 (b) denote the regions

[
µ̂4(tj)− εC(tj)

µ̃4(tj)
,
µ̂4(tj) + εC(tj)

µ̃4(tj)

]
. (16)

From the simulation results and the analysis above, we observe that the dependence of the estimation

errors on the number of repetitions is of order 1/
√
Nr. In the next sections, we will describe how

12

quantum computers can quadratically improve this dependence.

t
0.2 0.4 0.6 0.8 1

µ̂
4
(t
)/
µ̃
4
(t
)

0.994

0.996

0.998

1

1.002

1.004

b) relative value of fourth moment

Nr = 27 × 24

Nr = 210 × 24

t
0 0.5 1

µ̂
4
(t
)

0

0.2

0.4

0.6

0.8

1

a) fourth moment

µ4(t)
µ̂4(t)

Nr = 210 × 24 for µ̂4(t)

Fig. 1 MC simulations of a simple binary mixing process using Curl’s model. (a) Exponential

decay of the estimated 4-th central moment µ̂4(t) [Eq. (12)] as a function of time for a number

of repetitions Nr = 210 × 24. The estimated moments are very close to the exact solution

µ4(t) (dashed line), given by Eq. (10). (b) The estimated 4-th central moment relative to a

very accurate estimate µ̃4(t) for Np = 103. To reach a confidence level of 99.75%, the error

bars include up to three estimated standard deviations of the central moment [Eq. (16)].

The standard deviation is estimated by running the MC method Nr times, for Nr = 27 × 24

(dotted line, odd positions) and Nr = 210 × 24 (solid line, even positions). The relative error

increases with t as both µ̂4(t) and µ̃4(t) decay exponentially with t. The estimation error

of µ̂4(t) is of order 1/
√
Nr. Both of the figures obtained from simulations with initial PDF

P (ψ, 0) = 1
2
δ(ψ − 1) + 1

2
δ(ψ + 1). The simulation parameters are β = 2, ω = 1, γ = 0.5, t = 1,

∆t = 0.1, and Np = 103. The initial values are set so that ψk(i, 0) = −1 for all i ≤ Np/2 and

ψk(i, 0) = +1, otherwise.

IV. Quantum Computing and Quantum Metrology

Before we introduce our quantum algorithm, we provide a brief overview of the necessary back-

ground in quantum computing and quantum metrology. We then refer to Refs. [53, 54] and the

references within this section for more details. As a note, we use the standard bra-ket notation in

which a state |φ〉 can be associated with a column vector φ in the complex and finite dimensional

Hilbert space CN , and 〈φ| can be associated with φ†, the conjugate transpose of φ [53–55].

13

A. Quantum states and transformations

In the circuit model of quantum computation, the fundamental unit is the qubit. A qubit’s

state can be in any linear superposition of |0〉 and |1〉, i.e. |Ψ〉 = a0 |0〉+ a1 |1〉, where the complex

numbers a0 and a1 are normalized to unity: |a0|2 + |a1|2 = 1. The Hilbert space is C2. In this

representation, the states in the computational basis are

|0〉 .=




1

0


 , |1〉 .=




0

1


 . (17)

We also define the single-qubit states |+〉 = (|0〉 + |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2. Assigned to

each qubit are the Pauli (unitary) matrices

σ0 = 1l2 =




1 0

0 1


 , σx =




0 1

1 0


 , σy =




0 −i

i 0


 , σz =




1 0

0 −1


 . (18)

In general, 1lD will refer to the identity matrix of dimension D and is associated with a trivial

operation. Operations on a single qubit are implemented by sequences of unitary transformations

such as R(ν, θ) = e−iθσν/2, and ν = x, y, z. Up to a phase factor, these can be interpreted as rotations

around the ν axis (rotations in the Bloch’s sphere as in Fig. 2). Another useful and standard single-

qubit operation used in quantum computing is the so called Hadamard transformation H, which

transforms as H |0〉 = |+〉 and H |1〉 = |−〉, so that

H =
1√
2




1 1

1 −1


 . (19)

The state of n qubits can be represented as

|Ψ〉 =

N−1∑

l=0

al |l〉 = a0 |0 . . . 00〉+ a1 |0 . . . 01〉+ . . .+ aN−1 |1 . . . 11〉 . (20)

The Hilbert space is CN and the dimension is N = 2n. |l〉 represents a state in the computational

basis, where l is the corresponding binary representation. The normalization condition implies

∑N−1
l=0 |al|2 = 1. These states can then be represented as a vector of unit length. In some cases, it

will be useful to label the state each qubit independently as, for example, |00 . . .〉 = |0〉1 |0〉2 . . . |0〉n.

The algebra associated with n-qubit systems is generated by tensor products of Pauli matrices, that

14

x

z

y
e

| i

Fig. 2 A Bloch sphere representation of single-qubit unitary transformations. Up to a global

phase factor, single qubit states can be represented as |Ψ〉 = cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉. The

curved arrows indicate rotations with respect to the corresponding axis ν.

is,

σjν = σ0 ⊗ · · · ⊗ σν︸︷︷︸
jth position

⊗ · · · ⊗ σ0 . (21)

These are the Pauli operators “acting” on the j-th qubit. Here, ν = 0, x, y, z and j = 1, . . . , n. Note

that σj0 = 1lN for all j and is associated with a trivial operation. In quantum computing, many-

qubit operations are implemented by general unitary transformations. One is typically concerned

in applying such transformations (or approximations thereof) using sequences of gates drawn from

a universal gate set. One commonly considered gate set is that of transformations acting on one

and two qubits, such as

Rj(ν, θ) = e−iθσ
j
ν/2 , Rj,k(ω) = e−iωσ

j
zσ
k
z . (22)

Other universal sets of quantum gates can be obtained from the Rj(ν, θ) and controlled operations

15

such as CNOT, whose representation in a basis for the four-dimensional space of two qubits is



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




. (23)

This corresponds to a two-qubit unitary operation that “flips” the state of a target qubit depending

on the state of a control qubit; that is, it performs the transformation |00〉 → |00〉, |01〉 → |01〉,

|10〉 → |11〉, and |11〉 → |10〉.

For any n-qubit unitary U , we can define another n+ 1-qubit unitary transformation cU , which

is controlled on the state of an ancillary qubit a being in |1〉 and transforms as follows:

cU |0〉a |Ψ〉 = |0〉a |Ψ〉 , cU |1〉a |Ψ〉 = |1〉a U |Ψ〉 . (24)

The CNOT transformation described above is one example of this.

In quantum mechanics, all measurable quantities have an associated Hermitian operator (the

observable). In our case, we are only concerned with simple measurements of qubits in the basis |0〉

and |1〉 (i.e., the computational basis), where the measurement operators are the σjz. If the quantum

state is described as in Eq. (20), the probability of obtaining outcome l and projecting the state

into |l〉, after a simple measurement of all qubits, is |al|2 [56].

B. Quantum algorithms and quantum circuits

In the circuit model of quantum computing, a general quantum algorithm has three basic

steps. The first step involves an initial state preparation, such as the preparation of the simple

state |0〉 = |0 . . . 0〉. The second step consists of a sequence of instructions, each associated with

the implementation of a gate from a universal gate set to approximate a desired n-qubit unitary

operation. The final step is a projective measurement to obtain classical information that could be

processed to solve a problem. The complexity of a quantum algorithm is given by the number of

simple operations needed for each of the three steps. Typically, this complexity is dominated by the

number of elementary unitary gates needed to prepare the initial state and the second step, since

the complexity of simple measurements is assumed to be, at most, linear in n.

16

H	

H	

H	

|0i
|0i
|0i

U	

 U2	

 UM/2	

…	

…
	

 …	

 F-1	

0,1	

0,1	

0,1	

(a)	

(b)	

F	

…
	

…
	

H	

 R2	

 Rm	

H	

 Rm-1	

H	

…	

…	

Rk =

✓
1 0

0 ei2⇡/2k

◆

m	
 ancillary	
 	

qubits	

…	

…	

…
	

…
	

…	

…	

M = 2m

| i

Fig. 3 (a) Quantum circuit for phase estimation (PEA). The black circles denote a controlled

operation (e.g., a controlled Uk) on the corresponding state |1〉 of an ancilla qubit. The

measurement outcome provides an estimate of an eigenphase or eigenvalue of U in binary

representation (Sec. IVD). F−1 = F † is the unitary transformation that corresponds to the

inverse of the discrete Fourier transform (i.e., the inverse of the quantum Fourier transform).

(b) Quantum circuit for the Fourier transform in terms of one and two-qubit (controlled)

elementary gates. (For simplicity, the quantum circuit for F does not show a trivial swap

operation that permutes the order of the qubits at the end.)

Quantum algorithms are commonly represented by quantum circuits, which are sequences of

elementary unitary gates applied to an arbitrary initial state (time goes from left to right). An

example of a quantum circuit is given in Fig. 3, which describes the so-called quantum phase

estimation algorithm (PEA). In this case, the PEA uses the quantum Fourier transform F , for which

the quantum circuit is also given in Fig. 3 (b). The PEA outputs an estimate of an eigenphase or

eigenvalue of a unitary U [57]. See Sec. IVD for more details.

17

C. Classical and quantum computing

The class of problems that can be solved efficiently or in polynomial time with a quantum

computer is referred to as BQP. A well known result states that BPP ⊆ BQP, where BPP is the

class of problems that can be solved in polynomial time with a classical probabilistic computer.

To this end, we note that any Boolean function F : {0, 1}n → {0, 1}m can be computed with a

permutation F ′ : {0, 1}n+m → {0, 1}n+m such that F ′(x, y) = (x, y ⊕ F (x)), where ⊕ is addition

modulo 2. F ′ is then a permutation and a reversible function, and thus it can be simulated with

unitary gates and a quantum circuit [58]. In fact, any permutation can be realized with sequences

of permutations on three bits, and such transformations only require negation and so-called Toffoli

gates. Negation is a one-qubit transformation and its matrix representation is simply given by σx.

A Toffoli transformation is a three-qubit operation and its matrix representation is




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




. (25)

To simulate a classical probabilistic algorithm efficiently on a quantum computer, each perfectly

classical random bit can be simulated by introducing a new ancilla qubit in the state |+〉a. (A

random bit that has probability p of being in 0 can be simulated with an ancilla qubit in the state

√
p |0〉a +

√
1− p |1〉a.) We can then operate controlled on the state of the ancilla and disregard

it at the end of the computation. In more detail, assume that the state of a classical computer is

σ ∈ {0, 1}n. We then introduce a random bit and depending on the value of the random bit we

transform the state to σ0 ∈ {0, 1}n or σ1 ∈ {0, 1}n using reversible operations, as described before.

These states can be obtained via the action of a permutation. To simulate this transformation on

18

a quantum computer, we can implement a unitary transformation that operates as follows:

|+〉a |σ〉 →
1√
2

(|0〉a |σ0〉+ |1〉a |σ1〉) . (26)

It follows that a simple measurement of the ancilla qubit in Eq. (26) provides the outcome 0 or 1

with probability exactly 1/2, thereby simulating the classical probabilistic process. In either case,

the state of the quantum computer is projected into |σ0〉 or |σ1〉, respectively.

D. Quantum computing and metrology

An important application of quantum processing of information is precision sensing or quantum-

enhanced metrology (QM) (c.f., [59] and references therein). The goal of QM is to obtain properties

of quantum states as precisely as possible given the available resources. Consider, for example,

the problem of obtaining the probability p by making measurements on the single qubit state

|Ψ〉 =
√
p |0〉 +

√
1− p |1〉. One possible way to estimate p is by repeated state preparations and

by counting the frequency of outcome 0 after measurement. This procedure is similar to that

of estimating the probability that a biased coin lands in tails (or heads) by repeated coin flips.

Chebyshev’s inequality states that the uncertainty in the estimation of p scales as 1/
√
Nr, where

Nr is the number of repetitions. Quantum computers, however, can achieve the same precision in

the estimation of p using the unitary that prepares |Ψ〉 only order of
√
Nr or 1/p times [5, 6, 35].

This is the so-called QM limit.

One method to achieve the QM limit is as follows. Let U ′ be the single qubit unitary transfor-

mation that implements U ′ |0〉 =
√
p |0〉+√1− p |1〉. Using the Pauli matrices, we can represent U ′

as e−iθσy/2, where θ = 2 arccos(
√
p). We also define U = e−iθσz/2, which is basically U ′ conjugated

by the unitary that transforms σy → σz. The quantum algorithm will produce an estimate of θ

within precision ε > 0, which can be translated to an estimate of p with the same order of precision.

The estimate of θ is θ̂, which we represent in binary as

θ̂ = 2π[.b′1, b
′
2, . . . b

′
m]

= π(b′1 + b′2/2 + . . . b′m/2
m−1) . (27)

Here, b′i ∈ {0, 1} specifies the bits of the number in the binary representation, and we choose

m = O(log2(1/ε)) so that the desired ε precision is achieved. The quantum algorithm is defined in

19

m basic steps, where each step j results in the outcome b′m−j+1 (i.e., we start by estimating the

least significant bit and move towards the most significant ones). The single-qubit PEA is

Input: A single-qubit unitary U = e−iθσz/2 and a precision parameter ε > 0.

1. Obtain the smallest integer m such that M ≥ 2π/ε, with M = 2m.

2.

2.1 Prepare the single-qubit state |+〉 and apply U , M/2 times.

2.2 Apply a Hadamard transformation and measure the qubit in the computational basis.

Let b′m ∈ {0, 1} be the measurement outcome.

3. Do the following for each k = (m− 1), . . . , 1:

3.1 Prepare the single qubit state |+〉 and apply U , 2k−1 times.

3.2 Compensate the phase of |1〉 by e−iπ[.b′k+1...b
′
m].

3.3 Apply a Hadamard transformation and measure the qubit in the computational basis.

Let b′k ∈ {0, 1} be the measurement outcome.

Output: An estimate of θ as θ̂ = 2π[.b′1 . . . b
′
m].

The probability that this quantum algorithm returns an m-bit estimate θ̂ is, in general,

Pr(θ̂) =
1

4m

∣∣∣∣
ei2

mθ − 1

ei(θ−θ̂) − 1

∣∣∣∣
2

. (28)

In particular, if θ can be exactly represented by m − 1 bits as in Eq. (27) (i.e., θ is an m-th root

of unity), the quantum algorithm provides an estimate that is exact: Pr(θ̂ = θ) = 1 and 2mθ = 0

mod (2π) in that case. In general, this quantum algorithm returns one of the two best m-bit

approximations of θ with probability (confidence level) at least 0.81 [60]. This algorithm is a version

of the PEA of Fig. 3 where the (inverse) quantum Fourier transform is implemented sequentially [61]

attaining the same output.

In general, the choice ofm ensures that these approximations are within precision ε. For constant

confidence level and precision ε = O(1/M), the quantum algorithm requires M = 2m uses of U .

20

This is a quadratic cost improvement over standard methods [62]. It is also possible to arbitrarily

increase the confidence level of the estimation to c < 1 by repetition as follows. Let θ̂1, . . . , θ̂L be L

estimates of the phase θ obtained by L independent executions of the PEA. Let θl and θr be the two

closest m-bit approximations of θ. Then, the probability that θ̂i /∈ [θl, θr] is bounded from above by

pf = 0.19. We will then obtain the estimate θ̂ as the median of the L estimates. By doing so, the

probability that θ̂ /∈ [θl, θr] can be bounded by [6, 63]

1

2

(
2
√
pf (1− pf)

)L
≤ 1

2
(0.8)L . (29)

Then, L = O(| log(1 − c)|) repetitions suffice for a confidence level c. The number of times the

unitary U is used is

Nr = L×M . (30)

The previous single-qubit PEA can be simply generalized to provide the eigenphase of a unitary

U acting on n-qubit states. Let |Ψ〉 = V |00 . . . 0〉 be the eigenvector of U that satisfies U |Ψ〉 =

eiθ |Ψ〉. We also define the unitary cU , which implements U controlled on the state of an ancilla

qubit being in |1〉a or does nothing if the state is |0〉a. The PEA to estimate θ is:

21

Input: n-qubit unitaries U and V , and a precision parameter ε > 0.

1. Obtain the smallest integer m such that M ≥ 2π/ε, with M = 2m.

2.

2.1 Prepare |Ψ〉 and the single-qubit ancilla state |+〉a, and apply cU , M/2 times.

2.2 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′m ∈ {0, 1} be the measurement outcome.

3. Do the following for each k = (m− 1), . . . , 1:

3.1 Prepare the single-qubit ancilla state |+〉a and apply cU , 2k−1 times.

3.2 Compensate the phase of |1〉a by e−iπ[.b
′
k+1...b

′
m].

3.3 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′k ∈ {0, 1} be the measurement outcome.

Output: An estimate of θ as θ̂ = 2π[.b′1 . . . b
′
m].

This algorithm implements the same transformation and provides the same output as that of

the PEA in Fig. 3 [6]. As in the single-qubit case, it can be shown that the probability that the

algorithm outputs θ̂ is given by Eq. (28). Thus, one of the two closest m-bit approximations of θ is

obtained with probability of, at least, 0.81. For arbitrary confidence level, the algorithm needs to

be repeated L = O(| log(1− c)|) times. The complexity of the algorithm is then mainly dominated

by the number of uses of cU , which is Nr, and L uses of V . The gate complexity of the algorithm

is obtained after decomposing cU and V as a sequence of elementary one and two-qubit gates.

The previous algorithm can also be used when the input state |Ψ〉 is not an eigenstate of U but

rather a linear combination of eigenstates; that is

|Ψ〉 =
∑

j

cj |Ψj〉 , (31)

where cj ∈ C and |Ψj〉 satisfies U |Ψj〉 = eiθj |Ψj〉. Note that
∑
j |cj |2 = 1. The output of the

algorithm is then an estimate θ̂j of θj with probability given by |cj |2, which is the population of |Ψ〉

in the corresponding eigenstate.

22

✓

S0

S1

2✓

(a)$ (b)$ U

U | i

| i

W | i

W | i = cos(✓/2)| i+ ei' sin(✓/2)| ?i

| i

| ?i

Fig. 4 Bloch’s sphere representation of the two-dimensional vector space spanned by |Ψ〉 and

W |Ψ〉. Under the assumption that w = 〈Ψ|W |Ψ〉 ≥ 0, we obtain w = cos(θ/2). (a) Representa-

tion of the two reflections S0 and S1 = WS0W
†, with S0 defined in Eq. (32). (b) Representation

of the effective rotation U = S0S1 for an angle of 2θ. The eigenvalues of U are e±iθ and its

eigenphases are ±θ.

The PEA can also be used as a subroutine to obtain expectation values of operators in n-qubit

states with minimal prior knowledge [6, 9]. To illustrate this, letW be an n-qubit unitary operation

and w = 〈Ψ|W |Ψ〉 be the expectation value of W in the pure n-qubit state |Ψ〉 = V |00 . . . 0〉. For

simplicity, assume that w ≥ 0. (The analysis for the general case where w ∈ C is slightly more

involved and can be found in [6].) The quantum states |Ψ〉 and W |Ψ〉 span a vector (Hilbert) space

of dimension 2, as in Fig. 4. In this case, W |Ψ〉 = cos(θ/2) |Ψ〉 + eiϕ sin(θ/2)|Ψ⊥〉, where |Ψ⊥〉 is

the state orthogonal to |Ψ〉 in the subspace. Thus, w = cos(θ/2), with θ ≤ π. The “trick” to obtain

w is to design a unitary operation that has θ as eigenphase and then use the PEA.

We first consider the unitary operation S0, which implements a reflection over the state |Ψ〉;

that is

S0 |Ψ〉 = − |Ψ〉 , S0|Ψ⊥〉 = |Ψ⊥〉 . (32)

Equivalently, we can write S0 = 1l2n −2 |Ψ〉 〈Ψ| = 1l2n −2V |00 . . . 0〉 〈00 . . . 0|V †. The implication is

that S0 can be implemented by first applying V †, then applying a reflection over the simple n-qubit

23

state |00 . . . 0〉, and then applying V . The reflection over |00 . . . 0〉 can be performed using standard

techniques with a number of one and two-qubit elementary gates that is linear in n [53]. Then, the

gate complexity of S0 is twice the gate complexity of V and additionally O(n) gates.

Next we consider the unitary operation S1, which implements a reflection over W |Ψ〉. This is

simply S1 = WS0W
†, and the gate complexity of S1 is that of S0 plus twice the gate complexity

of W . The composition of the two reflections, U = S0S1, is then a rotation in the two-dimensional

Hilbert space by an angle of 2θ. Thus, its eigenvalues in that subspace are e±iθ, and the PEA can

be used to estimate θ and thus w. Additionally, it can be shown that

|Ψ〉 =
1√
2

(|Ψ+〉+ |Ψ−〉) , (33)

where |Ψ±〉 are such that U |Ψ±〉 = e±iθ |Ψ±〉, i.e., the eigenstates of U . It implies that, if the

initial state is |Ψ〉 and we execute the PEA, we will obtain an estimate of θ or −θ with probability

1/2, respectively. Since we are interested in w = cos(θ/2), any of these estimations suffices. The

quantum algorithm to estimate w is:

24

Input: n-qubit unitaries W and V , and a precision parameter ε > 0.

1. Obtain the smallest integer m such that M ≥ 2π/ε, with M = 2m.

2.

2.1 Prepare |Ψ〉 and the single-qubit ancilla state |+〉a, and apply cU , M/2 times. Here, U =

S0S1.

2.2 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′m ∈ {0, 1} be the measurement outcome.

3. Do the following for each k = (m− 1), . . . , 1:

3.1 Prepare the single-qubit ancilla state |+〉a and apply cU , 2k−1 times.

3.2 Compensate the phase of |1〉a by e−iπ[.b
′
k+1...b

′
m].

3.3 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′k ∈ {0, 1} be the measurement outcome.

Output: ŵ, an estimate of w = 〈Ψ|W |Ψ〉 as cos(θ̂/2), with θ̂ = 2π[.b′1 . . . b
′
m].

Since θ̂ is an estimate of either θ or −θ within precision ε, the precision ε′ in the estimation of w

at first order in ε is O((ε/2) sin(θ̂/2)). It follows that better precision estimates are obtained when

w is near 1 (i.e, θ and θ̂ are near zero). To bound the error in these cases, we can use the inequality

| cos(θ̂/2)− cos(θ/2)| ≤ ε′ = | cos((θ̂ + ε)/2)− cos(θ̂/2)| , (34)

which is valid when 0 ≤ θ̂ ≤ π and 0 < ε ≤ 1. A similar bound can be obtained for −π ≤ θ̂ ≤ 0.

That is, the above quantum algorithm produces an estimate ŵ that satisfies

Pr(|ŵ − w| ≤ ε′) ≥ 0.81 . (35)

As before, we can arbitrarily increase the confidence bounds to c < 1 in the estimation by obtaining

L = O(| log(1− c)|) independent estimates of θ and computing the median– see Eq. (29).

Last, we focus on the estimation of expectation values a = 〈Ψ|A |Ψ〉, where A is an observable

(i.e., A = A†) but not necessarily a unitary operation. There are several ways to use the previous

25

algorithm to obtain a depending on A; see [6] for an example. If A ≥ 0 and ‖A‖ ≤ 1, in some cases

it is possible to construct a unitary that acts as

W |Ψ〉 |0〉a = A |Ψ〉 |0〉a +B |Ψ〉 |1〉a , (36)

where a is an ancillary qubit. Examples of such unitariesW have been considered in recent quantum

algorithms for various problems [64, 65]. Then,

a = 〈Ψ|A |Ψ〉

= 〈Ψ| 〈0|aW |Ψ〉 |0〉a , (37)

and the problem reduces to the estimation of the expectation value of the unitary W in the state

|Ψ〉 |0〉a. See [6, 9, 64, 65] for addressing a more general case.

V. A quantum algorithm for the C/D model

We now consider a quantum algorithm to simulate the same problem as the classical MC method

described in Sec. III. We will show that for accurate estimation of particular properties of ψ

at a given time t, this algorithm provides a quadratic speedup over the corresponding classical

method. We will introduce the algorithm in subsection VA and follow this with the simulation of

the corresponding PEA for binary mixing in subsection VC. While classical MC methods can be

parallelized by running different repetitions at the same time, the quantum algorithm presented in

subsection VA is sequential. Nevertheless, we explain a potential way to deal with parallelization

in subsection VD.

A. General statement of the algorithm

To build our quantum algorithm, we first focus on the preparation of the initial quantum state

|Ψ〉. The amplitudes of this quantum state encodes all the information obtained by the MC algorithm

of Sec. III. It is prepared by a sequence of elementary gates that represent reversible operations

that simulate the random processes in MC, as described in Sec. IVC. That is,

|Ψ〉 = V |00 . . . 0〉

=
∑

ψ1,...,ψNp

√
Q(ψ1, . . . , ψNp)

∣∣ψ1, . . . , ψNp
〉
|ξψ1,...,ψNp

〉 . (38)

26

The probabilities Q(ψ1, . . . , ψNp , tj) are exactly those of the MC algorithm at step j, i.e., they are

the probabilities that ψk(i, tj) = ψi:

Q(ψ1, . . . , ψNp) = Q(ψk(1, tj) = ψ1, . . . , ψ
k(Np, tj) = ψNp) (39)

Each |ψ1, . . . , ψNp〉 is a state in the computational basis having ψi in binary representation and

|ξψ1,...,ψNp
〉 is a quantum state that contains information about all intermediate calculations and

will be discarded. The algorithm for initial state preparation is:

Input: t, β, ω, ∆t, Np, Nr

1. Obtain Nt = dt/∆te, Ns = dβω∆tNpe.

2. Obtain a description of all simple classical gates v1, . . . , vT involved in the MC algorithm of

Sec. III.

3. Obtain the one and two-qubit (reversible) gates ṽ1, . . . , ṽT that are reversible versions of the vi

(Sec. IVC).

4. Construct and implement a unitary V = ṽT . . . ṽ1 on the initial state |00 . . . 0〉.

Output: The quantum state |Ψ〉 = V |00 . . . 0〉.

A measurement on |Ψ〉 of the register that encodes the ψi will output ψ1, . . . , ψNp with proba-

bility Q(ψ1, . . . , ψNp), as expected. However, such measurements will not be performed directly in

this algorithm - instead we employ the quantum metrology techniques of Sec. IVD to obtain better

estimates. The number of qubits n needed to represent |Ψ〉 scales with the number of bits needed

to implement the classical MC method. Also, the complexity of preparing |Ψ〉, i.e., the number

of gates to implement V , is similar to that of a single run of the MC algorithm since each simple

operation in MC is replaced by an equivalent reversible operation in the quantum algorithm. Our

objective is to reduce the resource requirements in terms of Nr, the number of repetitions of the

MC method.

Our goal is to estimate properties of the distribution Q(ψk(1, tj), . . . , ψ
k(Np, tj)). Assume, for

example, that we aim at obtaining the l-th central moment of this distribution as defined by Eq. (6).

27

In MC, the estimation of the l-th central moment is obtained via Eq. (12), which in the limit of

Nr →∞, they become

1

Np

∑

ψi,...,ψNp

Q(ψ1, . . . , ψNp)
[
(ψ1 − Ẽ[ψk(tj)])

l + . . .+ (ψNp − Ẽ[ψk(tj)])
l
]
. (40)

Here,

Ẽ[ψk(tj)] :=
1

Np

∑

ψ1,...,ψNp

Q(ψ1, . . . , ψNp)(ψ1 + . . .+ ψNp) . (41)

(In the case of binary mixing, we can assume Ẽ[ψk(tj)] = 0.) It is then simple to construct a

(diagonal) observable A such that

〈Ψ|A |Ψ〉 =
1

Np

∑

ψ1,...,ψNp

Q(ψ1, . . . , ψNp)((ψ1)l + . . .+ (ψNp)l) . (42)

The observable has the property

A|ψ1, . . . , ψNp〉 =
1

Np
((ψ1)l + . . .+ (ψNp)l)|ψ1, . . . , ψNp〉 . (43)

Under the assumption |ψi| ≤ 1, as is the case of binary mixing, it is simple to show the existence

of a unitary W that implements [Eq. (37)]

W
∣∣ψ1, . . . , ψNp

〉
|0〉a = A

∣∣ψ1, . . . , ψNp
〉
|0〉a + |φ⊥〉 |1〉a , (44)

where |φ⊥〉 is an irrelevant quantum state. For example, in block-matrix form,

W =




A
√

1−A2

√
1−A2 −A


 , (45)

where the first (second) block in the diagonal corresponds to the subspace where the ancillary state is

|0〉a (|1〉a). Keeping all other variables constant (including the number of qubits needed to represent

each ψi), the gate complexity of W is polynomial in Np. This gate complexity may be negligible

when compared to the gate complexity of V . The techniques invoked to implement W are standard

in quantum computing [53]. Equation (44) implies

w = 〈Ψ| 〈0|aW |Ψ〉 |0〉a

=
1

Np

∑

ψ1,...,ψNp

Q(ψ1, . . . , ψNp)((ψ1)l + . . .+ (ψNp)l) . (46)

28

It is then simple to reduce the problem of estimating the l-th central moment [Eq. (40)] to that of

estimating the expectation value of a unitary W [Eq. (46)].

For some mixing problems, such as binary mixing, the l-th central moment may decay rapidly

as a function of t. This translates to a small value of w and thus the precision of the estimation is

of order ε/2 (Sec. IVD). To improve the precision, we can use a simple trick to shift the estimate

of the l-th central moment by computing the expected value of a unitary W that is close to 1 [see

Eq. (34)]. In this case, instead of using W as in Eq. (44), we can define W as

W |ψ1, . . . , ψNp〉 |0〉a = (1−A)|ψ1, . . . , ψNp〉 |0〉a + |η⊥〉 |1〉a , (47)

where |η⊥〉 is also an irrelevant quantum state. The estimation of w = 〈Ψ| 〈0|aW |Ψ〉 |0〉a within

precision εQ results in the estimation of the l-th central moment within the same order of precision.

We are ready to use the techniques of quantum metrology to obtain the l-th central moment.

Our main result is the following quantum algorithm:

29

Input: l, t, β, ω, ∆t, Np, ε

1. Obtain N = dt/∆te, Ns = dβω∆tNpe and the smallest integer m such that M ≥ 2π/ε, with

M = 2m.

2. Construct the unitary V to prepare |Ψ〉 as in Eq. (38).

3. Construct the unitary W as in Eq. (44) or Eq. (47).

4. Construct the unitary U = S0S1 = S0WS0W
†, where S0 = 1l2n − 2 |Ψ〉 〈Ψ| is the reflection

operator.

5.

5.1 Prepare |Ψ〉 and the single-qubit ancilla state |+〉a, and apply cU , M/2 times.

5.2 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′m ∈ {0, 1} be the measurement outcome.

6. Do the following for each k = (m− 1), . . . , 1:

6.1 Prepare the single-qubit ancilla state |+〉a and apply cU , 2k−1 times.

6.2 Compensate the phase of |1〉a by e−iπ[.b
′
k+1...b

′
m].

6.3 Apply a Hadamard transformation and measure the ancilla qubit in the computational basis.

Let b′k ∈ {0, 1} be the measurement outcome.

Output: An estimate of the l-th central moment as cos(θ̂/2), with θ̂ = 2π[.b′1 . . . b
′
m].

The confidence level for the estimation is bounded from below by 0.81 and can be arbitrarily

increased by L repeated estimates as described in Sec. IVD [Eq. (29)].

B. Complexity

In this section we analyze the complexity of the previous algorithms. For simplicity, we disregard

logarithmic factors in the order notation. The complexity to prepare the initial state |Ψ〉 is given

by the number of elementary gates to implement V . As V is constructed using reversible versions

of the operations used in the MC method, it is reasonable to assume that the complexity of V for

30

the C/D model is of order O(NtNs) = O(tβωNp), i.e., the number of simple operations in a single

MC run. The complexity of W is determined by the complexity of computing the corresponding

function of ψ1, . . . , ψNp (i.e., an estimate of the l-th central moment) and the number of gates to

implement W is then O((Np)
q) for some q > 0. The complexity of W may then be significantly

smaller than that of V . As U makes two calls to V and two calls to V †, the complexity of U is

also O(tβωNp). Our quantum algorithm uses U a total of M times and its overall complexity is

then O(tβωNp/ε). This result has to be compared with that of Sec. III A, where the dependence

on ε is quadratically worse. As discussed, to reach arbitrary confidence level c, the overhead is a

multiplicative factor O(| log(1− c)|).

C. Example: Quantum algorithm for binary mixing

We simulate our main quantum algorithm for the binary mixing problem to compare its perfor-

mance with that of the MC method in Sec. III. By simulation of a quantum algorithm we mean a

classical procedure that allows us to sample from the same outcomes as those provided by a mea-

surement performed in the quantum state of a quantum computer. Typically, such a procedure is

inefficient, having a complexity that is exponential in the number of qubits, and classical computer

simulations can only be performed when the number of qubits is less than or of the order of 40. This

is far fewer than the number of qubits that would be required to execute our quantum algorithm.

Nevertheless, here we can simulate the estimation process because of the simplicity of the prob-

lem and our accurate knowledge of the distribution of the measurement outcome in the quantum

algorithm due to our efficient classical MC simulation.

We consider the same binary mixing problem of Sec. III B and use the same parameters. To

reach the same confidence level c = 99.75% as MC, the quantum algorithm has to be invoked several

times. Each time we obtain an estimate of the phase and then compute the median of the estimated

phases. Using Eq. (29), the number of repetitions is

L ≥ log(2× (1− 0.9975))

log(0.8)
, (48)

and we can choose L = 24. This is the reason why we use the convenient factorization of Nr as

2m × 24.

31

Our classical simulations are implemented as follows. There are L = 24 steps and each step

returns a phase 2θ̂i according to the same probability distribution as that if we were to run the main

quantum algorithm of Sec. V. Because of the way we construct the classical sampling method, we

can assume 0 ≤ θ/2 < π/2, and then 0 ≤ 2θ < 2π. In the quantum algorithm, this could be done

by replacing U → U2 without changing the complexity of the PEA. The probability distribution

associated with 2θ̂i is given by Eq. (28) (replacing θ → 2θ and θ̂ → 2θ̂), which requires knowledge

of the true value of θ (i.e., at infinite precision). In our case, we are interested in obtaining an

estimate to the 4-th central moment, namely µ̂4(t). As µ4(t) decays exponentially with t, we define

the unitary W via Eq. (44) when µ4(t) > 1/2, and via Eq. (47) when µ4(t) ≤ 1/2 (l = 4). This

would allow us to reduce the error as explained in Sec. IVD, Eqs. (34) and (35).

We first obtain µ̃4(t), which is a very accurate estimate of µ4(t) by applying the MC techniques

of Sec. III B and using Nr = 220 × 60 times. Note that this would not be possible in more general

mixing problems, which is the reason why we may need the quantum algorithm to obtain much

better precision. We let µ̃4(t) be such an accurate estimate and then obtain the actual θ as

θ/2 =





arccos(1− µ̃4(t)) if µ̃4(t) ≤ 1/2

arccos(µ̃4(t)) if µ̃4(t) > 1/2 .

We write 2θ̂ = 2π[.b′1 . . . b
′
m] for the m bit representation of the estimate of 2θ. To sample from

the distribution of Eq. (28), after replacing θ → 2θ and θ̂ → 2θ̂, we proceed as follows. After simple

calculations, it can be shown that

Pr(b′m = 0) =
1

2
(1 + cos(Mθ)) , Pr(b′m = 1) = 1− Pr(b′m = 0), (49)

where M = 2m and M ≥ 2π/ε. The sampling probabilities for the remaining bits are obtained

recursively as follows. For k = m− 1, . . . , 1, we let

Pr(b′k = 0) =
1

2

(
1 + cos(2kθ − π[.b′k+1 . . . b

′
m])
)
, Pr(b′k = 1) = 1− Pr(b′k = 0) . (50)

This provides a simple way to sample from the desired distribution of Eq. (28) by sampling each bit

according to a distribution that depends on the outcome of previous bits.

In Fig. 5 (a), we provide the quantum-algorithm simulation results for the estimate of the

4-th central moment, µ̂4(t). We used m = 10 bits of precision and L = 24 repetitions; that is,

32

Nr = 210 × 24. As in Sec. III B, we observe that the 4-th central moment decays exponentially in

time. In Fig. 5 (b), we compare µ̂4(t) with µ̃4(t), which is very close to the exact solution when

the number of particles is Np = 103, and for different values of m. When t ≥ 0.3, the quantum

algorithm estimates the value 1 − µ4(t), rather than µ4(t), to obtain smaller error estimates. To

obtain the error bars, we note that if 2θ̂ is an estimate of 2θ within precision 2π/2m, then Eq. (34)

implies

εQ =
∣∣∣cos((θ̂ + ε/2)/2)− cos(θ̂/2)

∣∣∣ (51)

That is, we replaced ε by ε/2 ≥ 2π/2m+1 in Eq. (34), since we are estimating 2θ within precision ε.

The results shown in Fig. 5 should be compared with those in Fig. 1.

In Fig. 6, we compare the errors output by the classical MC method (εC) and our PEA (εQ).

The results are for the 4-th central moment of the binary mixing model described above, for different

values of t and Nr. The errors were obtained from Eqs. (15) and (51), respectively. The different

scalings are clear, showing the advantages of the quantum algorithm as Nr becomes larger.

Moreover, which algorithm provides results in a shorter time will depend on the speed of the

hardware, as well as prefactors associated with the specific implementation of both classical and

quantum algorithms. However, the power of quantum computing is clearly demonstrated in the

very different scaling of the precision with the number of repetitions. It is this change in scaling

that represents what is usually referred to as the quantum speed-up, and which gives significant

advantages for high-precision parameter estimation.

D. Parallelization

While classical MC methods have a poor complexity dependence on the precision parameter ε,

one important feature is that they can be parallelized somewhat easily. Here, we investigate the

extent to which our quantum algorithms that are based on phase estimation can be parallelized.

To this end, we follow and adapt the results in [6] to the problem of turbulent mixing. At its core,

the advantage of our quantum enhanced methods is due to two facts: i) the possibility to reduce

the problem to the estimation of the phase θ of a unitary operator and ii) the possibility to encode

information about Mθ on a quantum state, M = O(1/ε), using resources that are almost linear in

33

t
0.2 0.4 0.6 0.8 1

µ̂
4
(t
)/
µ̃
4
(t
)

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

b) relative value of fourth moment

Nr = 27 × 24

Nr = 210 × 24

t
0 0.5 1

µ̂
4
(t
)

0

0.2

0.4

0.6

0.8

1

a) fourth moment

µ4(t)
µ̂4(t)

Nr = 210 × 24 for µ̂4(t)

Fig. 5 Quantum-algorithm simulation of a simple binary mixing process using Curl’s model

with the same simulation parameters in Fig. 1. (a) Exponential decay of the estimated 4-th

central moment µ̂4(t), as a function of time for a number of state preparations Nr = 210 × 24

[Eq. (30)]. This was obtained as µ̂4(t) = cos(θ̂/2) (t < 0.3) or µ̂4(t) = 1−cos(θ̂/2) (t ≥ 0.3) , where θ̂

is the phase estimate obtained by the quantum PEA. The estimated moments are very close

to the exact solution µ4(t) (dashed line), given by Eq. (10). (b) The estimated 4-th central

moment relative to a very accurate estimate µ̃4(t) for Np = 103. The data shown here are for

Nr = 27 × 24 (dotted line, odd positions) and Nr = 210 × 24 (solid line, even positions). To

reach a confidence level of 99.75 %, the error bars were obtained as Eq.(51). The relative

error increases with t as both µ̂4(t) and µ̃4(t) decay exponentially with t. The estimation error

of µ̂4(t) is of order 1/Nr. Note that in (b) we use a different scale to that shown in Fig.1(b),

and that it is not meaningful to compare the quantum and classical algorithms based on

these figures alone, as the algorithms would run on different hardware. The advantage of the

quantum algorithm is in the scaling with Nr, which we plot in Fig. 6, and discuss in detail in

the text.

M . Under reasonable assumptions, obtaining an estimate of a function f(Mθ) within precision ∆f

usually results in an estimate of θ within precision of order ∆f/M .

As constructed, the state |Ψ〉 of Eq. (38) is an equal linear combination of eigenstates of U =

S0S1 with eigenvalues e±iθ [Eq. (33)]. The PEA then returns one estimate with probability 1/2. If

it is possible to prepare a single eigenstate of U (say that of eigenvalue e+iθ), |Ψ+〉, then one can

34

Nr

10
4

10
5

10
6

10
7

10
8

E
rr

o
r

10
-6

10
-5

10
-4

10
-3

10
-2

a) t=0.1

ǫC

ǫQ

Nr

10
4

10
5

10
6

10
7

10
8

10
-6

10
-5

10
-4

10
-3

10
-2

b) t=0.5

ǫC

ǫQ

Nr

10
4

10
5

10
6

10
7

10
8

10
-6

10
-5

10
-4

10
-3

c) t=1

ǫC

ǫQ

Fig. 6 Comparison of the errors output by the classical MC method (εC) and our quantum

PEA (εQ). The results are for the 4-th central moment of the binary mixing model studied

in Secs. III B and VC, for different values of t and Nr. The latter refers to the number of

repetitions of the classical MC method or the number of state preparations needed by our

quantum PEA. The data points are for Nr = 2m × L, where m = 10, 14, 17, 20 and L = 24. The

confidence level of the estimation is 99.75%. The logarithmic scale allows us to observe clearly

a better precision dependence, in terms of Nr, for our quantum PEA than for MC simulations.

use the results of [66] to parallelize the algorithm. To obtain a circuit of short depth, the steps to

estimate the k-th bit of the phase need not be implemented sequentially. This can be overcome by

first preparing the M ancillas in the cat state (|00 . . . 0〉 + |11 . . . 1〉)/
√

2, rather than |+〉⊗m as in

the sequential approach, and by preparing M copies of |Ψ+〉. (Recall that M = 2m.) Then, the

unitary operation U can be implemented in parallel conditional on the state of each of the ancillas.

The final ancillary state contains information about Mθ that can be extracted following the results

of [6]. The quantum circuit is depicted in Fig. 7.

To prepare a single copy of the eigenstate |Ψ+〉 from |Ψ〉, we will simulate a projective measure-

ment of the eigenstates of U on |Ψ〉. This measurement can be made via the PEA of Fig. 3 using a

number of bits of precision, m′, that is sufficiently large to distinguish between the phases +θ and

−θ with high probability. Then, m′ = O(| log(θ)|) and a single run of phase estimation requires

using U order 1/θ times. If we succeed in measuring +θ, the quantum state |Ψ〉 is projected into

35

E!

|0i
|0i
|0i

U! …!

…
! …! E-1!

0,1$

0,1$

0,1$

…
!

M$ancillary$$
qubits$

M = 2mU!

U!

M$copies$
…!

…!

…
!

…
!

Fig. 7 The parallel version of the PEA. The algorithm outputs an estimate θ̂ of the eigenphase

of the unitary U . The number of resources is almost linear in 1/ε, where ε is the precision

of the estimation. E denotes the entangling gate that prepares the ancillary quantum state

(|00 . . . 0〉 + |11 . . . 1〉)/
√

2. The conditional W operations commute with each other and can

be implemented in parallel. The j-th bit of the estimate θ̂ eigenphase is the outcome of

measurement on 2j−1-th qubit.

|Ψ+〉 and we keep that copy. If we fail, we discard the state, prepare |Ψ〉, and run the PEA again.

Since the probability of succeeding in the preparation of |Ψ+〉 is exactly 1/2, the number of imple-

mentations of PEA to create M copies is of order M logM . For constant θ, the overall number of

resources of the parallel algorithm is almost linear in M , as in the sequential case.

VI. Conclusions and Outlook

In this paper, we have presented a quantum algorithm for a turbulent mixing problem, which

provides a quadratic speedup over classical MC methods in terms of the number of repetitions that

are required to achieve a given level of precision. We analyzed the application of our algorithm to

a binary scalar mixing process modeled by means of the coalescence/dispersion (C/D) closure, esti-

mating the precision obtained as a function of the number of repetitions for classical MC techniques

and our quantum algorithm, obtaining the expected speedup. We also analyzed in which ways the

quantum algorithm can be parallelized to restrict the number of resources used.

36

On its own, this algorithm can be applied to a range of turbulent mixing problems, and demon-

strates the potential power of quantum computing in this area. More broadly, this first example

study gives us a basis from which to further analyze questions associated with the potential appli-

cations of future quantum computers in fluid dynamics. Although we expect that it will be some

time before the implementation of a quantum computer large enough to run this algorithm, recent

developments in quantum hardware are very encouraging [11–18]. Beginning now to investigate the

detailed application of this technology to computational problems in fluid dynamics should both

motivate further developments in quantum computing, and help us to understand better the likely

impact of this potentially disruptive technology. Our specific example highlights also how study-

ing potential applications forces us to ask new questions about the implementation of quantum

algorithms - in this case, especially regarding the parallelization of our procedure.

Acknowledgments

This work was supported by AFOSR grant FA9550-12-1-0057, Quantum Speedup for Turbulent

Combustion Simulations, which brought together the authors from physics, quantum information

and engineering. Results were obtained using the EPSRC funded ARCHIE-WeSt High Performance

Computer (www.archie-west.ac.uk). EPSRC grant no. EP/K000586/1.

References

[1] Montanaro, A., “Quantum algorithms: an overview,” Npj Quantum Information, Vol. 2, 01 2016,

pp. 15023 EP –.

[2] Grover, L. K., “A fast quantum mechanical algorithm for database search,” Proceedings of the 28th

Annual ACM Symposium on the Theory of Computing , 1996, pp. 212–219.

[3] Szegedy, M., “Quantum speed-up of Markov chain based algorithms,” Proceedings of the 45th Annual

IEEE Symposium on Foundations of Computer Science, 2004, pp. 32–41.

[4] Magniez, F., Nayak, A., Roland, J., and Santha, M., “Search via Quantum Walk,” Proceedings of the

39th Symposium on the Theory of Computing , 2006, pp. 575–584.

[5] Giovannetti, V., Lloyd, S., and Maccone, L., “Quantum metrology,” Phys. Rev. Lett., Vol. 96, 2006,

pp. 010401.

37

[6] Knill, E., Ortiz, G., and Somma, R., “Optimal Quantum Measurements of Expectation Values of

Observables,” Phys. Rev. A, Vol. 75, 2007, pp. 012328.

[7] Somma, R. D., Boixo, S., Barnum, H., and Knill, E., “Quantum Simulations of Classical Annealing

Processes,” Phys. Rev. Lett., Vol. 101, 2008, pp. 130504–4.

[8] Poulin, D. and Wocjan, P., “Preparing Ground States of Quantum Many-Body Systems on a Quantum

Computer,” Phys. Rev. Lett., Vol. 102, 2009, pp. 130503.

[9] Montanaro, A., “Quantum Speedup of Monte Carlo Methods,” Proc. Roy. Soc. Ser. A, Vol. 471, 2015,

pp. 20150301.

[10] Chowdhury, A. and Somma, R. D., “Quantum algorithms for Gibbs sampling and hitting-time estima-

tion,” arXiv:1603.02940 , 2016.

[11] Kelly, J., Barends, R., Fowler, A. G., Megrant, A., Jeffrey, E., White, T. C., Sank, D., Mutus, J. Y.,

Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I. C., Neill, C., O/’Malley, P. J. J.,

Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A. N., and Martinis, J. M., “State

preservation by repetitive error detection in a superconducting quantum circuit,” Nature, Vol. 519, No.

7541, 03 2015, pp. 66–69.

[12] Martinez, E. A., Muschik, C. A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte,

M., Monz, T., Zoller, P., and Blatt, R., “Real-time dynamics of lattice gauge theories with a few-qubit

quantum computer,” Nature, Vol. 534, No. 7608, 06 2016, pp. 516–519.

[13] Monz, T., Nigg, D., Martinez, E. A., Brandl, M. F., Schindler, P., Rines, R., Wang, S. X., Chuang,

I. L., and Blatt, R., “Realization of a scalable Shor algorithm,” Science, Vol. 351, No. 6277, 2016,

pp. 1068–1070.

[14] Debnath, S., Linke, N. M., Figgatt, C., Landsman, K. A., Wright, K., and Monroe, C., “Demonstration

of a small programmable quantum computer with atomic qubits,” Nature, Vol. 536, No. 7614, 08 2016,

pp. 63–66.

[15] Blatt, R. and Wineland, D., “Entangled states of trapped atomic ions,” Nature, Vol. 453, No. 7198, 06

2008, pp. 1008–1015.

[16] Clarke, J. and Wilhelm, F. K., “Superconducting quantum bits,” Nature, Vol. 453, No. 7198, 06 2008,

pp. 1031–1042.

[17] Devoret, M. H. and Schoelkopf, R. J., “Superconducting Circuits for Quantum Information: An Out-

look,” Science, Vol. 339, No. 6124, 2013, pp. 1169–1174.

[18] Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L., and Petta, J. R., “Quantum Spintronics:

Engineering and Manipulating Atom-Like Spins in Semiconductors,” Science, Vol. 339, No. 6124, 2013,

38

pp. 1174–1179.

[19] Toor, H. L., “Mass Transfer in Dilute Turbulent and Nonturbulent Systems with Rapid Irreversible

Reactions and Equal Diffusivities,” AIChE J., Vol. 8, 1962, pp. 70–78.

[20] Brodkey, R. S., editor, Turbulence in Mixing Operation, Academic Press, New York, NY, 1975.

[21] Libby, P. A. and Williams, F. A., editors, Turbulent Reacting Flows, Vol. 44 of Topics in Applied

Physics, Springer-Verlag, Heidelberg, 1980.

[22] Pope, S. B., “PDF Methods for Turbulent Reactive Flows,” Prog. Energ. Combust., Vol. 11, 1985,

pp. 119–192.

[23] Givi, P., “Model Free Simulations of Turbulent Reactive Flows,” Prog. Energ. Combust., Vol. 15, 1989,

pp. 1–107.

[24] Kollmann, W., “The PDF Approach to Turbulent Flow,” Theor. Comp. Fluid Dyn., Vol. 1, 1990,

pp. 249–285.

[25] Libby, P. A. and Williams, F. A., editors, Turbulent Reacting Flows, Academic Press, London, England,

1994.

[26] Pope, S. B., Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.

[27] Haworth, D. C., “Progress in Probability Density Function Methods for Turbulent Reacting Flows,”

Prog. Energ. Combust., Vol. 36, No. 2, 2010, pp. 168–259.

[28] Dopazo, C., “Recent Developments in PDF Methods,” Libby and Williams [25], chap. 7, pp. 375–474.

[29] Fox, R. O., Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cam-

bridge, UK, 2003.

[30] Givi, P., “Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion,” AIAA J.,

Vol. 44, No. 1, 2006, pp. 16–23.

[31] Haworth, D. C. and Pope, S. B., “Transported Probability Density Function Methods for Reynolds-

Averaged and Large-Eddy Simulations,” Turbulent Combustion Modeling , edited by T. Echekki and

E. Mastorakos, Vol. 95 of Fluid Mechanics and Its Applications, Springer Netherlands, 2011, pp. 119–

142.

[32] Haworth, D. C. and Pope, S. B., “Monte Carlo Solutions of a Joint PDF Equation for Turbulent Flows

in General Orthogonal Coordinates,” J. Comput. Phys., Vol. 72, No. 2, 1987, pp. 311–346.

[33] Kloeden, P. E., Platen, E., and Schurz, H., Numerical Solution of Stochastic Differential Equations

through Computer Experiments, Springer-Verlag, New York, NY, corrected second printing ed., 1997.

[34] Madnia, C. K., Jaberi, F. A., and Givi, P., “Large Eddy Simulation of Heat and Mass Transport in

Turbulent Flows,” Handbook of Numerical Heat Transfer , edited by W. J. Minkowycz, E. M. Sparrow,

39

and J. Y. Murthy, chap. 5, John Wiley & Sons, Inc., New York, NY, 2nd ed., 2006, pp. 167–189.

[35] Giovannetti, V., Lloyd, S., and Maccone, L., “Quantum-enhanced measurements: beating the standard

quantum limit,” Science, Vol. 306, 2004, pp. 1330.

[36] Janicka, J., Kolbe, W., and Kollmann, W., “Closure of the Transport Equation for the Probability

Density Function of Turbulent Scalar Field,” J. Non-Equil. Thermodyn., Vol. 4, 1979, pp. 47–66.

[37] Pope, S. B., “An Improved Turbulent Mixing Model,” Combust. Sci. Technol., Vol. 28, 1982, pp. 131–

145.

[38] Kosály, G. and Givi, P., “Modeling of Turbulent Molecular Mixing,” Combust. Flame, Vol. 70, 1987,

pp. 101–118.

[39] O’Brien, E. E., “The Probability Density Function (PDF) Approach to Reacting Turbulent Flows,”

Libby and Williams [21], chap. 5, pp. 185–218.

[40] Pope, S. B., “The Probability Approach to Modeling of Turbulent Reacting Flows,” Combust. Flame,

Vol. 27, 1976, pp. 299–312.

[41] Chen, H., Chen, S., and Kraichnan, R. H., “Probability Distribution of a Stochastically Advected Scalar

Field,” Phys. Rev. Lett., Vol. 63, No. 24, 1989, pp. 2657–2660.

[42] Pope, S. B., “Mapping Closures for Turbulent Mixing and Reaction,” Theor. Comp. Fluid Dyn., Vol. 2,

1991, pp. 255–270.

[43] Valiño, L. and Dopazo, C., “A Binomial Langevin Model for Turbulent Mixing,” Phys. Fluids A, Vol. 3,

No. 12, 1991, pp. 3034–3037.

[44] Miller, R. S., Frankel, S. H., Madnia, C. K., and Givi, P., “Johnson-Edgeworth Translation for Proba-

bility Modeling of Binary Scalar Mixing in Turbulent Flows,” Combust. Sci. Technol., Vol. 91, No. 1-3,

1993, pp. 21–52.

[45] Subramaniam, S. and Pope, S. B., “A Mixing Model for Turbulent Reactive Flows Based on Euclidean

Minimum Spanning Trees,” Combust. Flame, Vol. 115, 1998, pp. 487–514.

[46] Klimenko, A. Y. and Pope, S. B., “The Modeling of Turbulent Reactive Flows Based on Multiple

Mapping Conditioning,” Phys. Fluids, Vol. 15, No. 7, 2003, pp. 1907–1925.

[47] Pope, S. B., “A Model for Turbulent Mixing Based on Shadow-Position Conditioning,” Phys. Fluids,

Vol. 25, No. 11, 2013, pp. 110803.

[48] Jaberi, F. A., Miller, R. S., Madnia, C. K., and Givi, P., “Non-Gaussian Scalar Statistics in Homogeneous

Turbulence,” J. Fluid Mech., Vol. 313, 1996, pp. 241–282.

[49] Pope, S. B., “Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion,” Proc.

Combust. Inst., Vol. 34, No. 1, 2013, pp. 1–31.

40

[50] Curl, R. L., “Dispersed Phase Mixing: I. Theory and Effects in Simple Reactors,” AIChE J., Vol. 9,

No. 2, 1963, pp. 175–181.

[51] Borghi, R., “Turbulent Combustion Modeling,” Prog. Energ. Combust., Vol. 14, 1988, pp. 245–292.

[52] Hoeffding, W., “Probability Inequalities for Sums of Bounded Random Variables,” J. Am. Stat. Assoc.,

Vol. 58, 1963, pp. 13–30.

[53] Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information, Cambridge Uni-

versity Press, Cambridge, UK, 2000.

[54] Kaye, P., Laflamme, R., and Mosca, M., An Introduction to Quantum Computing , Oxford University

Press, USA, 2007.

[55] Dirac, P., “A new notation for quantum mechanics,” Math. Proc. Cambridge Phil. Soc., Vol. 35, 1939,

pp. 416–418.

[56] Griffiths, D. J., Introduction to Quantum Mechanics, Pearson, UK, 2014.

[57] Kitaev, A. Y., “Quantum measurements and the Abelian Stabilizer Problem,” arxiv:quant-ph/9511026 ,

Nov. 1995.

[58] Kitaev, A. Y., Shen, A., and Vyalyi, M., Classical and Quantum Computation, American Mathematical

Society, 2002.

[59] Nawrocki, W., Introduction to Quantum Metrology , Springer, 2015.

[60] Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M., “Quantum algorithms revisited,” Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1969, 1998,

pp. 339–354.

[61] Griffiths, R. and Niu, C.-S., “Semiclassical Fourier Transform for Quantum Computation,” Phys. Rev.

Lett., Vol. 76, 1996, pp. 3228.

[62] Brassard, G., Høyer, P., Mosca, M., and Tapp, A., Quantum Computation and Quantum Information:

A Millennium Volume, AMS Contemporary Mathematics Series, Am. Math. Soc., USA, 2000.

[63] Nagaj, D., Wocjan, P., and Zhang, Y., “Fast Amplification of QMA,” Quant. Inf. Comp., Vol. 9, April

2009, pp. 1053.

[64] Berry, D., Childs, A., Cleve, R., Kothari, R., and Somma, R., “Simulating Hamiltonian Dynamics with

a Truncated Taylor Series,” Phys. Rev. Lett., Vol. 114, 2015, pp. 090502.

[65] Childs, A., Kothari, R., and Somma, R. D., “Quantum linear systems algorithm with exponentially

improved dependence on precision,” arXiv:1511.02306 , 2015.

[66] Bollinger, J. J., Itano, W. M., Wineland, D. J., and Heinzen, D. J., “Optimal frequency measurements

with maximally correlated states,” Phys. Rev. A, Vol. 54, 1996, pp. R4649.

41

