60 research outputs found

    Symphony on strong field approximation

    Get PDF
    This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiellonski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrodinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carre, who passed away in March 2018 at the age of 60

    Surface structure of epitaxial Gd(0001) films on W(110) studied by quantitative LEED analysis

    Get PDF
    The surface structure of thick (400 Å) Gd(0001) films, epitaxially grown on W(110), is investigated by low-energy electron-diffraction (LEED) IV measurements in combination with dynamical LEED calculations. A first-layer contraction of 2.4% and a second-layer spacing expansion of 1% is found. These findings are in good agreement with literature values determined for the (0001) surface of bulk Gd crystals. No significant difference in the LEED IV data is found between films grown at room temperature and films grown at elevated temperatures.published_or_final_versio

    Electron correlation effects and magnetic ordering at the Gd(0001) surface

    Full text link
    Effects of electron correlation on the electronic structure and magnetic properties of the Gd(0001) surface are investigated using of the full-potential linearized augmented plane wave implementation of correlated band theory ("LDA+U"). The use of LDA+U instead of LDA (local density approximation) total energy calculations produces the correct ferromagnetic ground state for both bulk Gd and the Gd surface. Surface strain relaxation leads to an 90 % enhancement of the interlayer surface-to-bulk effective exchange coupling. Application of a Landau-Ginzburg type theory yields a 30 % enhancement of the Curie temperature at the surface, in very good agreement with the experiment.Comment: revised version: minor typos correcte

    Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Full text link
    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2 x 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2 x 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of \approx 0.170 ns for 15 cm axial field-of-view (AFOV) and \approx 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.Comment: To be published in Phys. Med. Biol. (26 pages, 17 figures
    corecore