1,407 research outputs found

    Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2

    Get PDF
    In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min(-1) with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions

    Diffractive SUSY particle production at the LHC

    Get PDF
    We give detailed predictions for diffractive SUSY Higgs boson and top squark associated productions at the LHC via the exclusive double pomeron exchange mechanism. We study how the SUSY Higgs cross section and the signal over background ratio are enhanced as a function of tangent beta in different regimes. The prospects are particularly promising in the ``anti-decoupling'' regime, which we study in detail. We also give the prospects for a precise measurement of the top squark mass using the threshold scan of central diffractive associated top squark events at the LHC.Comment: 14 pages, 6 fig

    Radiative Neutralino Decay in Supersymmetric Models

    Full text link
    The radiative decay Z2-> Z1 gamma proceeds at the one-loop level in the MSSM. It can be the dominant decay mode for the second lightest neutralino Z2 in certain regions of parameter space of supersymmetric models, where either a dynamical and/or kinematic enhancement of the branching fraction occurs. We perform an updated numerical study of this decay mode in both the minimal supergravity model (mSUGRA) and in the more general MSSM framework. In mSUGRA, the largest rates are found in the ``focus point'' region, where the mu parameter becomes small, and the lightest neutralinos become higgsino-like; in this case, radiative branching fraction can reach the 1% level. Our MSSM analysis includes a scan over independent positive and negative gaugino masses. We show branching fractions can reach the 10-100% level even for large values of the parameter tan(beta). These regions of parameter space are realized in supergravity models with non-universal gaugino masses. Measurement of the radiative neutralino branching fraction may help pin down underlying parameters of the fundamental supersymmetric model.Comment: 19 page JHEP file with 8 PS figures; previous version contained figure misplacemen

    New allowed mSUGRA parameter space from variations of the trilinear scalar coupling A0

    Full text link
    In minimal Supergravity (mSUGRA) models the lightest supersymmetric particle (assumed to be the lightest neutralino) provides an excellent cold dark matter (CDM) candidate. The supersymmetric parameter space is significantly reduced, if the limits on the CDM relic density, obtained from WMAP data, are used. Assuming a vanishing trilinear scalar coupling A0 and fixed values of tan(beta), these limits result in narrow lines of allowed regions in the m0-m1/2 plane, the so called WMAP strips. In this analysis the trilinear coupling A0 has been varied within +/-4 TeV. A fixed non vanishing A0 value leads to a shift of the WMAP strips in the m0-m1/2 plane.Comment: Typos corrected, Fig.1. updated, references adde

    Supersymmetric QCD corrections to e+etbˉHe^+e^-\to t\bar{b}H^- and the Bernstein-Tkachov method of loop integration

    Full text link
    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.

    Summary of the SUSY Working Group of the 1999 Les Houches Workshop

    Full text link
    The results obtained by the Working Group on Supersymmetry at the 1999 Les Houches Workshop on Collider Physics are summarized. Separate chapters treat "general" supersymmetry, R-parity violation, gauge mediated supersymmetry breaking, and anomaly mediated supersymmetry breaking.Comment: LaTeX, 110 pages with numerous .ps and .eps files. proc.tex is main tex fil

    The Minimal Supersymmetric Standard Model: Group Summary Report

    Get PDF
    CONTENTS: 1. Synopsis, 2. The MSSM Spectrum, 3. The Physical Parameters, 4. Higgs Boson Production and Decays, 5. SUSY Particle Production and Decays, 6. Experimental Bounds on SUSY Particle Masses, 7. References.Comment: 121 pages, latex + epsfig, graphicx, axodraw, Report of the MSSM working group for the Workshop "GDR-Supersym\'etrie",France. Rep. PM/98-4

    Theoretical uncertainties in sparticle mass predictions from computational tools

    Get PDF
    We estimate the current theoretical uncertainty in sparticle mass predictions by comparing several state-of-the-art computations within the minimal supersymmetric standard model (MSSM). We find that the theoretical uncertainty is comparable to the expected statistical errors from the Large Hadron Collider (LHC), and significantly larger than those expected from a future e+e- Linear Collider (LC). We quantify the theoretical uncertainty on relevant sparticle observables for both LHC and LC, and show that the value of the error is significantly dependent upon the supersymmetry (SUSY) breaking parameters. We also present the theoretical uncertainty induced in fundamental-scale SUSY breaking parameters when they are fitted from LHC measurements. Two regions of the SUSY parameter space where accurate predictions are particularly difficult are examined in detail: the large tan(beta) and focus point regimes.Comment: 22 pages, 6 figures; comment added pointing out that 2-loop QCD corrections to mt are incorrect in some of the programs investigated. We give the correct formul

    TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider

    Full text link
    The TESLA Technical Design Report Part III: Physics at an e+e- Linear ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full quality figures can be obtained from http://tesla.desy.de/tdr. Editors - R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa
    corecore