5,933 research outputs found

    Early quark production and approach to chemical equilibrium

    Get PDF
    We perform real-time lattice simulations of out-of-equilibrium quark production in non-Abelian gauge theory in 3+1-dimensions. Our simulations include the backreaction of quarks onto the dynamical gluon sector, which is particularly relevant for strongly correlated quarks. We observe fast isotropization and universal behavior of quarks and gluons at weak coupling and establish a quantitative connection to previous pure glue results. In order to understand the strongly correlated regime, we perform simulations for a large number of flavors and compare them to those obtained with two light quark flavors. By doing this we are able to provide estimates of the chemical equilibration time

    Development of a spectroscopic photoelectric imaging Fabry-Perot interferometer preliminary observational results

    Get PDF
    In order to observe extended astronomical objects at high spatial and spectral resolution, a spectroscopic photoelectric imaging Fabry-Perot interferometer was constructed. Among the properties chosen for the instrument are an air-spaced, piezoelectrically scanned design allowing an accurately settable free spectral range and employing a single etalon of high finesse. Careful design of the etalon mountings and optical train preserves high ligh throughput. Spectra of single spatial elements with a photomultiplier were obtained, and an SEC vidicon detector was used to record a series of images through the interferometer while scanning the wavelength in discrete steps. The latter procedure yields sufficient information to reconstruct spectral features over the entire object, and for the conditions assumed, either series of observations requires only a small fraction of a rotational period for Jupiter or Saturn. An electronic control system was also constructed which permits rapid and flexible variation of the operational mode of the Fabry-Perot and its ancilliary devices so as to minimize loss of observational time

    A non-commutative semi-discrete Toda equation and its quasi-determinant solutions

    Get PDF

    Isotropic subbundles of TMTMTM\oplus T^*M

    Full text link
    We define integrable, big-isotropic structures on a manifold MM as subbundles ETMTME\subseteq TM\oplus T^*M that are isotropic with respect to the natural, neutral metric (pairing) gg of TMTMTM\oplus T^*M and are closed by Courant brackets (this also implies that [E,Eg]Eg[E,E^{\perp_g}]\subseteq E^{\perp_g}). We give the interpretation of such a structure by objects of MM, we discuss the local geometry of the structure and we give a reduction theorem.Comment: LaTex, 37 pages, minimization of the defining condition

    Spin-S bilayer Heisenberg models: Mean-field arguments and numerical calculations

    Full text link
    Spin-S bilayer Heisenberg models (nearest-neighbor square lattice antiferromagnets in each layer, with antiferromagnetic interlayer couplings) are treated using dimer mean-field theory for general S and high-order expansions about the dimer limit for S=1, 3/2,...,4. We suggest that the transition between the dimer phase at weak intraplane coupling and the Neel phase at strong intraplane coupling is continuous for all S, contrary to a recent suggestion based on Schwinger boson mean-field theory. We also present results for S=1 layers based on expansions about the Ising limit: In every respect the S=1 bilayers appear to behave like S=1/2 bilayers, further supporting our picture for the nature of the order-disorder phase transition.Comment: 6 pages, Revtex 3.0, 8 figures (not embedded in text

    Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas

    Full text link
    Gyrokinetic field theory is addressed in the context of a general Hamiltonian. The background magnetic geometry is static and axisymmetric, and all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian or in free field terms. Equations for the fields are given by functional derivatives. The symmetry through the Hamiltonian with time and toroidal angle invariance of the geometry lead to energy and toroidal momentum conservation. In various levels of ordering against fluctuation amplitude, energetic consistency is exact. The role of this in underpinning of conservation laws is emphasised. Local transport equations for the vorticity, toroidal momentum, and energy are derived. In particular, the momentum equation is shown for any form of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD) form when long wavelength approximations are taken in the Hamiltonian. Several currently used forms, those which form the basis of most global simulations, are shown to be well defined within the gyrokinetic field theory and energetic consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following referee comments (discussion more strictly correct/consistent, 4 references added, results unchanged as they depend on consistency of the theory), resubmitted to Physics of Plasma
    corecore