77 research outputs found

    Local terrestrial biodiversity impacts in life cycle assessment:A case study of sedum roofs in London, UK

    Get PDF
    Urban development is a key driver of global biodiversity loss. “Green” infrastructure is integrated to offset some impacts of development on ecosystem quality by supporting urban biodiversity, a prominent example being green roofs. The effects of green infrastructures on urban biodiversity are not well understood and poorly included in life cycle assessment (LCA) methodology. Here, we present a novel methodology that quantifies the local impact of green infrastructures on terrestrial biodiversity—demonstrated here for sedum roofs in London, UK—and integrates within LCA. It relates energy provision by plants to the metabolic requirements of animals to determine what species richness (number of species) and species abundance (number of individuals) are supported. We demonstrate this methodology using a case study, comparing the life cycle impact of developing 18 buildings, with either asphalt concrete or sedum roofs, on ecosystem quality. We found the sedum roofs (0.018 km 2) support 53 species (673 individuals), equivalent to 1.3% of the development's life cycle impacts on ecosystem quality. Complete offsetting requires considerable reduction in transport use throughout the development's lifetime, and lower environmental impact material selection during construction (contributing 98% and 2%, respectively). The results indicate sedum roofs offer minor impact mitigation capacities in the context of urban development, and this capacity is limited for all green infrastructures by species richness in local species pools. This paper demonstrates the potential and limitations of quantifying terrestrial biodiversity offsets offered by green infrastructures alongside urbanization, and the need for realistic expectations of what role it might play in sustainable urban design.</p

    Local Terrestrial Biodiversity Impacts in Life Cycle Assessment: A Case Study of Sedum Roofs in London, UK

    Get PDF
    Urban development is a key driver of global biodiversity loss. ‘Green infrastructure is integrated to offset some impacts of development on ecosystem quality by supporting urban biodiversity. A prominent example being green roofs. The effects of green infrastructures on urban biodiversity are not well understood and poorly included in life cycle assessment (LCA) methodology. Here, we present a novel methodology that quantifies the local impact of green infrastructures on terrestrial biodiversity – demonstrated here for sedum roofs in London, UKand integrates within LCA. It relates energy provision by plants to the metabolic requirements of animals, to determine what species richness (number of species) and species abundance (number of individuals) are supported. We demonstrate this methodology using a case study, comparing the life cycle impact of developing 18 buildings, with either asphalt concrete or sedum roofs, on ecosystem quality. We found the sedum roofs (0.018 km2) support 53 species(673 individuals), equivalent to 1.3% of the development’s life cycle impacts on ecosystem quality. Complete offsetting requires considerable reduction in transport use throughout the development’s lifetime, and lower environmental impact material selection during construction (contributing 98% and 2% respectively). The results indicate sedum roofs offer minor impact mitigation capacities in the context of urban development, and this capacity is limited for allgreen infrastructures by species richness in local species pools. This paper demonstrates the potential and limitations of quantifying terrestrial biodiversity offsets offered by green infrastructures alongside urbanisation, and the need for realistic expectations of what role it might play in sustainable urban design.<br/

    Resource requirements for ecosystem conservation: A combined industrial and natural ecology approach to quantifying natural capital use in nature

    Get PDF
    Socioeconomic demand for natural capital is causing catastrophic losses of biodiversity and ecosystem functionality, most notably in regions where socioeconomic-and eco-systems compete for natural capital, e.g., energy (animal or plant matter). However, a poor quantitative understanding of what natural capital is needed to support biodiversity in ecosystems, while at the same time satisfy human development needs—those associated with human development within socioeconomic systems—undermines our ability to sustainably manage global stocks of natural capital. Here we describe a novel concept and accompanying methodology (relating the adult body mass of terrestrial species to their requirements for land area, water, and energy) to quantify the natural capital needed to support terrestrial species within ecosystems, analogous to how natural capital use by humans is quantified in a socioeconomic context. We apply this methodology to quantify the amount of natural capital needed to support species observed using a specific surveyed site in Scotland. We find that the site can support a larger assemblage of species than those observed using the site; a primary aim of the rewilding project taking place there. This method conceptualises, for the first time, a comprehensive “dual-system” approach: modelling natural capital use in socioeconomic-and eco-systems simultaneously. It can facilitate the management of natural capital at the global scale, and in both the conservation and creation (e.g., rewilding) of biodiversity within managed ecosystems, representing an advancement in determining what socioeconomic trade-offs are needed to achieve contemporary conservation targets alongside ongoing human development

    The sustainability of changes in agricultural technology:The carbon, economic and labour implications of mechanisation and synthetic fertiliser use

    Get PDF
    New agricultural technologies bring multiple impacts which are hard to predict. Two changes taking place in Indian agriculture are a transition from bullocks to tractors and an associated replacement of manure with synthetic fertilisers. This paper uses primary data to model social, environmental and economic impacts of these transitions in South India. It compares ploughing by bullocks or tractors and the provision of nitrogen from manure or synthetic urea for irrigated rice from the greenhouse gas (GHG), economic and labour perspective. Tractors plough nine times faster than bullocks, use substantially less labour, with no significant difference in GHG emissions. Tractors are twice as costly as bullocks yet remain more popular to hire. The GHG emissions from manure-N paddy are 30 % higher than for urea-N, largely due to the organic matter in manure driving methane emissions. Labour use is significantly higher for manure, and the gender balance is more equal. Manure is substantially more expensive as a source of nutrients compared to synthetic nutrients, yet remains popular when available. This paper demonstrates the need to take a broad approach to analysing the sustainability impacts of new technologies, as trade-offs between different metrics are common

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions

    Lake sediment evidence for late-Holocene climate change and landscape erosion in western Iceland

    No full text
    Ecosystem variability must be assessed over a range of timescales in order to fully understand natural ecosystem processes. Long-term climate change, at millennial and centennial scales, is a major driver of natural ecosystem variability, but identifying evidence of past climate change is frequently confounded by human-induced impacts on the ecosystem. Iceland is a location where it is possible to separate natural from anthropogenic change in environmental archives, as the date of settlement is accepted to be around AD 874, prior to which the island was free from proven human impacts. We used a lake sediment core from Breiðavatn, near Reykholt, a major farm of the Norse period in western Iceland, to examine landscape development. A change in pollen concentration in the sediments, especially the decline in Betula, indicated initial landscape degradation immediately post-settlement, whereas the chironomid fauna and reconstructed temperatures were relatively complacent during this period. The pollen evidence is corroborated by 14C analyses, which indicate an increase in older carbon entering the lake, inferred to have been caused by increased erosion following settlement. Further decreases in Betula pollen occurred around AD 1300, pre-dating a drop in chironomid-inferred temperatures (CI-T) of ~1°C over 100–200 years. The CI-T reconstruction also shows a significant cooling after ~AD 1800, likely indicative of the coldest phase of the Little Ice Age. The evidence suggests that the chironomid record was relatively unaffected by the increased landscape degradation and hence reveals a temperature reconstruction independent of human impact
    • 

    corecore