106 research outputs found
Screening magnetic fields by a superconducting disk: a simple model
We introduce a simple approach to evaluate the magnetic field distribution
around superconducting samples, based on the London equations; the elementary
variable is the vector potential. This procedure has no adjustable parameters,
only the sample geometry and the London length, , determine the
solution. The calculated field reproduces quantitatively the measured induction
field above MgB disks of different diameters, at 20K and for applied fields
lower than 0.4T. The model can be applied if the flux line penetration inside
the sample can be neglected when calculating the induction field distribution
outside the superconductor. Finally we show on a cup-shape geometry how one can
design a magnetic shield satisfying a specific constraint
Power processing unit for hall-effect thrusters on "Meteor-M №3 spacecraf"
The development results of power processing unit (PPU-M) for hall-effect thrusters on "Meteor-M №3" spacecraft are considered. The structure, weight, dimensions and main technical characteristics of the system in the paper are presented. The work peculiarity of the system is unstable input voltage of both power bus and control bus that increases the ripple voltages and currents at the input and the output and causes the additional requirements to the circuit design. A comparative analysis of the system characteristics and European analogs was carried out, and then a conclusion on the basis of available data that the characteristics of the system are not inferior to European analogs was mad
Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb 1.5Te3
Bulk p and n-type bismuth tellurides were prepared using spark plasma texturization method. The texture development along the uniaxial load in the 001 direction is confirmed from both x-ray diffraction analysis and electron backscattering diffraction measurements. Interestingly, those textured samples outperform the samples prepared by conventional spark plasma sintering (SPS) leading to a reduced thermal conductivity in the ab-plane. The textured samples of n-type BiTe2.7Se0.3 and p-type Bi0.5Sb 1.5Te3 showed a 42% and 33% enhancement in figure of merit at room temperature, respectively, as compared to their SPS counterparts, opening the route for applications. © 2013 AIP Publishing LLC
ОБЗОР СЕМАНТИКИ ЯЗЫКА HTML 5
HTML5 несет в себе множество изменений разного уровня и разной важности. Принципиально, ключевые изменения можно разделить на 5 блоков: семантика, мультимедиа, динамичная графика, веб-формы, JavaScript APls. В данной статье рассмотрен обзор семантики HTML5 в котором появился ряд новых семантических тегов, позволяющих более осмысленно организовывать внутреннюю структуру веб-страни
Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes
The trapped magnetic field is examined in bulk high-temperature
superconductors that are artificially drilled along their c-axis. The influence
of the hole pattern on the magnetization is studied and compared by means of
numerical models and Hall probe mapping techniques. To this aim, we consider
two bulk YBCO samples with a rectangular cross-section that are drilled each by
six holes arranged either on a rectangular lattice (sample I) or on a centered
rectangular lattice (sample II). For the numerical analysis, three different
models are considered for calculating the trapped flux: (i), a two-dimensional
(2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D
finite-element model neglecting demagnetizing effects but incorporating
magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite
element analysis that takes into account both the finite height of the sample
and flux creep effects. For the experimental analysis, the trapped magnetic
flux density is measured above the sample surface by Hall probe mapping
performed before and after the drilling process. The maximum trapped flux
density in the drilled samples is found to be smaller than that in the plain
samples. The smallest magnetization drop is found for sample II, with the
centered rectangular lattice. This result is confirmed by the numerical models.
In each sample, the relative drops that are calculated independently with the
three different models are in good agreement. As observed experimentally, the
magnetization drop calculated in the sample II is the smallest one and its
relative value is comparable to the measured one. By contrast, the measured
magnetization drop in sample (1) is much larger than that predicted by the
simulations, most likely because of a change of the microstructure during the
drilling process.Comment: Proceedings of EUCAS 09 conferenc
Screening magnetic fields by superconductors: A simple model
We introduce a simple approach to evaluate the magnetic field distribution around superconducting samples, based on the London equations; the elementary variable is the vector potential. This procedure has no
adjustable parameters, only the sample geometry and the London length
determine the solution. This approach was validated by comparing the induction field calculated to the one measured above MgB2 disks of different diameters, at 20K and for applied fields lower than 0.4T. The model can be applied if the flux line penetration inside the sample can be neglected when calculating the induction field distribution outside the superconductor. We conclude by showing on a cup-shape geometry how one can design a magnetic shield satisfying a specific constraint
Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface
We present a method for characterizing the propagation of the magnetic flux
in an artificially drilled bulk high-temperature superconductor (HTS) during a
pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical
sample, the magnetic flux density is measured simultaneously in 16 holes by
means of microcoils that are placed across the median plane, i.e. at an equal
distance from the top and bottom surfaces, and close to the surface of the
sample. We discuss the time evolution of the magnetic flux density in the holes
during a pulse and measure the time taken by the external magnetic flux to
reach each hole. Our data show that the flux front moves faster in the median
plane than on the surface when penetrating the sample edge; it then proceeds
faster along the surface than in the bulk as it penetrates the sample further.
Once the pulse is over, the trapped flux density inside the central hole is
found to be about twice as large in the median plane than on the surface. This
ratio is confirmed by modelling
Perforated monodomain YBa 2 Cu 3 O 7-x bulk superconductors prepared by infiltration-growth process
Abstract : For various applications such as FCL, motor flyweel or bearing, ... the core of bulk superconductors need to be fully oxygenated and some defects like cracks, pores and voids suppressed, in order that the material can carry high current densities. In order to study and minimise the above defects, we have developed a new elaboration technique. YBa 2 Cu 3 O y (Y123) bulks have been prepared by combining liquid infiltration and top seed growth (ITSG) process. This process involves negligible shrinkage and an uniform distribution of Y211 inclusions. In addition, we prepare a regular perforation of the Y123 sample in view to magnify the specific surface and by then increase oxygen diffusion into the core of the material. Neutron texture analysis demonstrates the nonperturbative effect of the holes in the bulk from the orientation point of view. The advantages of the ITSG-process and of the novel perforated Y123 bulk are discussed
- …