1,679 research outputs found

    After the Standard Model: New Resonances at the LHC

    Full text link
    Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. In this article, the experiments' capability to observe new resonances in various channels is reviewed.Comment: Preprint version of a Brief Review for Modern Physics Letters A. Changes w.r.t. the fully corrected version are smal

    Charge asymmetries of top quarks: a window to new physics at hadron colliders

    Get PDF
    With the next start of LHC, a huge production of top quarks is expected. There are several models that predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range. A peak in the differential cross section could reveal the existence of such a resonance, but this is experimentally challenging, because it requires selecting data samples where top and antitop quarks are highly boosted. Nonetheless, the production of such resonances might generate a sizable charge asymmetry of top versus antitop quarks. We consider a toy model with general flavour independent couplings of the resonance to quarks, of both vector and axial-vector kind. The charge asymmetry turns out to be a more powerful observable to detect new physics than the differential cross section, because its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E1019E\sim 10^{19} eV to beyond E1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission

    Top Compositeness at the Tevatron and LHC

    Full text link
    We explore the possibility that the right-handed top quark is composite. We examine the consequences that compositeness would have on ttˉt \bar{t} production at the Tevatron, and derive a weak constraint on the scale of compositeness of order a few hundred GeV from the ttˉt \bar{t} inclusive cross section. More detailed studies of differential properties of ttˉt \bar{t} production could potentially improve this limit. We find that a composite top can result in an enhancement of the ttˉttˉt \bar{t} t \bar{t} production rate at the LHC (of as much as 10310^3 compared to the Standatd Model four top rate). We explore observables which allow us to extract the four top rate from the backgrounds, and show that the LHC can either discover or constrain top compositeness for wide ranges of parameter space.Comment: 9 pages, 4 figure

    New Higgs Production Mechanism in Composite Higgs Models

    Full text link
    Composite Higgs models are only now starting to be probed at the Large Hadron Collider by Higgs searches. We point out that new resonances, abundant in these models, can mediate new production mechanisms for the composite Higgs. The new channels involve the exchange of a massive color octet and single production of new fermion resonances with subsequent decays into the Higgs and a Standard Model quark. The sizable cross section and very distinctive kinematics allow for a very clean extraction of the signal over the background with high statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with data collected during 2012 and up to 5 TeV after the energy upgrade to s=14\sqrt{s}=14 TeV.Comment: 27 pages, 22 figures. V2: typos corrected, matches published versio

    Low-scale warped extra dimension and its predilection for multiple top quarks

    Get PDF
    Within warped extra dimension models that explain flavor through geometry, flavor changing neutral current constraints generally force the Kaluza-Klein scale to be above many TeV. This creates tension with a natural electroweak scale. On the other hand, a much lower scale compatible with precision electroweak and flavor changing neutral current constraints is allowed if we decouple the Kaluza-Klein states of Standard Model gauge bosons from light fermions clightcb0.5c_{\rm light}\simeq c_b\simeq 0.5 bulk mass parameters). The main signature for this approach is four top quark production via the Kaluza-Klein excitations' strong coupling to top quarks. We study single lepton, like-sign dilepton, and trilepton observables of four-top events at the Large Hadron Collider. The like-sign dilepton signature typically has the largest discovery potential for a strongly coupled right-handed top case (M_{KK} \sim 2-2.5 \TeV), while single lepton is the better when the left-handed top couples most strongly (M_{KK} \sim 2 \TeV). We also describe challenging lepton-jet collimation issues in the like-sign dilepton and trilepton channels. An alternative single lepton observable is considered which takes advantage of the many bottom quarks in the final state. Although searches of other particles may compete, we find that four top production via Kaluza-Klein gluons is most promising in a large region of this parameter space.Comment: 35 pages, 8 figures. discussions improved, references adde

    Soft-Wall Stabilization

    Full text link
    We propose a general class of five-dimensional soft-wall models with AdS metric near the ultraviolet brane and four-dimensional Poincar\'e invariance, where the infrared scale is determined dynamically. A large UV/IR hierarchy can be generated without any fine-tuning, thus solving the electroweak/Planck scale hierarchy problem. Generically, the spectrum of fluctuations is discrete with a level spacing (mass gap) provided by the inverse length of the wall, similar to RS1 models with Standard Model fields propagating in the bulk. Moreover two particularly interesting cases arise. They can describe: (a) a theory with a continuous spectrum above the mass gap which can model unparticles corresponding to operators of a CFT where the conformal symmetry is broken by a mass gap, and; (b) a theory with a discrete spectrum provided by linear Regge trajectories as in AdS/QCD models.Comment: 27 pages, 6 figures, 1 table. v2: references added, version to appear in NJP Focus Issue on Extra Dimension

    Top Quark Physics at the LHC: A Review of the First Two Years

    Full text link
    This review summarizes the highlights in the area of top quark physics obtained with the two general purpose detectors ATLAS and CMS during the first two years of operation of the Large Hadron Collider LHC. It covers the 2010 and 2011 data taking periods, where the LHC provided pp collisions at a center-of-mass energy of sqrt(s)=7 TeV. Measurements are presented of the total and differential top quark pair production cross section in many different channels, the top quark mass and various other properties of the top quark and its interactions, for instance the charge asymmetry. Measurements of single top quark production and various searches for new physics involving top quarks are also discussed. The already very precise experimental data are in good agreement with the standard model.Comment: 107 pages, invited review for Int. J. Mod. Phys. A, v2 is identical to v1 except for the addition of the table of content

    The LHC Inverse Problem, Supersymmetry and the ILC

    Get PDF
    We address the question whether the ILC can resolve the LHC Inverse Problem within the framework of the MSSM. We examine 242 points in the MSSM parameter space which were generated at random and were found to give indistinguishable signatures at the LHC. After a realistic simulation including full Standard Model backgrounds and a fast detector simulation, we find that roughly only one third of these scenarios lead to visible signatures of some kind with a significance {ge} 5 at the ILC with {radical}s = 500 GeV. Furthermore, we examine these points in parameter space pairwise and find that only one third of the pairs are distinguishable at the ILC at 5{sigma}
    corecore