3,677 research outputs found

    Condensation vs. phase-ordering in the dynamics of first order transitions

    Full text link
    The origin of the non commutativity of the limits tt \to \infty and NN \to \infty in the dynamics of first order transitions is investigated. In the large-N model, i.e. NN \to \infty taken first, the low temperature phase is characterized by condensation of the large wave length fluctuations rather than by genuine phase-ordering as when tt \to \infty is taken first. A detailed study of the scaling properties of the structure factor in the large-N model is carried out for quenches above, at and below T_c. Preasymptotic scaling is found and crossover phenomena are related to the existence of components in the order parameter with different scaling properties. Implications for phase-ordering in realistic systems are discussed.Comment: 15 pages, 13 figures. To be published in Phys. Rev.

    Overall time evolution in phase-ordering kinetics

    Full text link
    The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics of a system with conserved order parameter is investigated in the Bray-Humayun model and in the Cahn-Hilliard-Cook model. From the comparison of the structure factor in the two models the generic pattern of the overall time evolution, based on the sequence ``early linear - intermediate mean field - late asymptotic regime'' is extracted. It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature. The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in a simple way through the structure of the solution of the Bray-Humayun model.Comment: RevTeX, 14 pages, 18 figures, to appear in Phys. Rev.

    The process of irreversible nucleation in multilayer growth. II. Exact results in one and two dimensions

    Full text link
    We study irreversible dimer nucleation on top of terraces during epitaxial growth in one and two dimensions, for all values of the step-edge barrier. The problem is solved exactly by transforming it into a first passage problem for a random walker in a higher-dimensional space. The spatial distribution of nucleation events is shown to differ markedly from the mean-field estimate except in the limit of very weak step-edge barriers. The nucleation rate is computed exactly, including numerical prefactors.Comment: 22 pages, 10 figures. To appear in Phys. Rev.

    Electronically tuned optical filters

    Get PDF
    Electro-optical effect of light modifying type for electronically controlling colo

    The average shape of a fluctuation: universality in excursions of stochastic processes

    Full text link
    We study the average shape of a fluctuation of a time series x(t), that is the average value _T before x(t) first returns, at time T, to its initial value x(0). For large classes of stochastic processes we find that a scaling law of the form _T = T^\alpha f(t/T) is obeyed. The scaling function f(s) is to a large extent independent of the details of the single increment distribution, while it encodes relevant statistical information on the presence and nature of temporal correlations in the process. We discuss the relevance of these results for Barkhausen noise in magnetic systems.Comment: 5 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    A tunable rf SQUID manipulated as flux and phase qubit

    Full text link
    We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers", Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script

    Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP

    Full text link
    Abstract. SOAP (simple object access protocol) is a protocol that al-lows the access to remote objects independently of the computer archi-tecture and the language. A client using SOAP can send or receive ob-jects, or access remote object methods. Unlike other remote procedure call methods, like XML-RPC or RMI, SOAP can use many different transport types (for instance, it could be called as a CGI or as sockets). In this paper an approach to evolutionary distributed optimisation of multilayer perceptrons (MLP) using SOAP and language Perl has been done. Obtained results show that the parallel version of the developed programs obtains similar or better results using much less time than the sequential version, obtaining a good speedup. Also it can be shown that obtained results are better than those obtained by other authors using different methods.

    Extraction of decision rules via imprecise probabilities

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 2017, available online: https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1312359"Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.This work has been supported by the Spanish "Ministerio de Economia y Competitividad" [Project number TEC2015-69496-R] and FEDER funds.Abellán, J.; López-Maldonado, G.; Garach, L.; Castellano, JG. (2017). Extraction of decision rules via imprecise probabilities. International Journal of General Systems. 46(4):313-331. https://doi.org/10.1080/03081079.2017.1312359S313331464Abellan, J., & Bosse, E. (2018). Drawbacks of Uncertainty Measures Based on the Pignistic Transformation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(3), 382-388. doi:10.1109/tsmc.2016.2597267Abellán, J., & Klir, G. J. (2005). Additivity of uncertainty measures on credal sets. International Journal of General Systems, 34(6), 691-713. doi:10.1080/03081070500396915Abellán, J., & Masegosa, A. R. (2010). An ensemble method using credal decision trees. European Journal of Operational Research, 205(1), 218-226. doi:10.1016/j.ejor.2009.12.003(2003). International Journal of Intelligent Systems, 18(12). doi:10.1002/int.v18:12Abellán, J., Klir, G. J., & Moral, S. (2006). Disaggregated total uncertainty measure for credal sets. International Journal of General Systems, 35(1), 29-44. doi:10.1080/03081070500473490Abellán, J., Baker, R. M., & Coolen, F. P. A. (2011). Maximising entropy on the nonparametric predictive inference model for multinomial data. European Journal of Operational Research, 212(1), 112-122. doi:10.1016/j.ejor.2011.01.020Abellán, J., López, G., & de Oña, J. (2013). Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications, 40(15), 6047-6054. doi:10.1016/j.eswa.2013.05.027Abellán, J., Baker, R. M., Coolen, F. P. A., Crossman, R. J., & Masegosa, A. R. (2014). Classification with decision trees from a nonparametric predictive inference perspective. Computational Statistics & Data Analysis, 71, 789-802. doi:10.1016/j.csda.2013.02.009Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., & Zielosko, B. (2013). Optimization and analysis of decision trees and rules: dynamic programming approach. International Journal of General Systems, 42(6), 614-634. doi:10.1080/03081079.2013.798902Chang, L.-Y., & Chien, J.-T. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science, 51(1), 17-22. doi:10.1016/j.ssci.2012.06.017Chang, L.-Y., & Wang, H.-W. (2006). Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis & Prevention, 38(5), 1019-1027. doi:10.1016/j.aap.2006.04.009DE CAMPOS, L. M., HUETE, J. F., & MORAL, S. (1994). PROBABILITY INTERVALS: A TOOL FOR UNCERTAIN REASONING. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 02(02), 167-196. doi:10.1142/s0218488594000146DGT. 2011b.Spanish Road Safety Strategy 2011–2020, 222 p. Madrid: Traffic General Directorate.Dolques, X., Le Ber, F., Huchard, M., & Grac, C. (2016). Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis. International Journal of General Systems, 45(2), 187-210. doi:10.1080/03081079.2015.1072927Gray, R. C., Quddus, M. A., & Evans, A. (2008). Injury severity analysis of accidents involving young male drivers in Great Britain. Journal of Safety Research, 39(5), 483-495. doi:10.1016/j.jsr.2008.07.003Guo, J., & Chankong, V. (2002). Rough set-based approach to rule generation and rule induction. International Journal of General Systems, 31(6), 601-617. doi:10.1080/0308107021000034353Huang, H., Chin, H. C., & Haque, M. M. (2008). Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis. Accident Analysis & Prevention, 40(1), 45-54. doi:10.1016/j.aap.2007.04.002Kashani, A. T., & Mohaymany, A. S. (2011). Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Safety Science, 49(10), 1314-1320. doi:10.1016/j.ssci.2011.04.019Li, X., & Yu, L. (2016). Decision making under various types of uncertainty. International Journal of General Systems, 45(3), 251-252. doi:10.1080/03081079.2015.1086574Mantas, C. J., & Abellán, J. (2014). Analysis and extension of decision trees based on imprecise probabilities: Application on noisy data. Expert Systems with Applications, 41(5), 2514-2525. doi:10.1016/j.eswa.2013.09.050Mayhew, D. R., Simpson, H. M., & Pak, A. (2003). Changes in collision rates among novice drivers during the first months of driving. Accident Analysis & Prevention, 35(5), 683-691. doi:10.1016/s0001-4575(02)00047-7McCartt, A. T., Mayhew, D. R., Braitman, K. A., Ferguson, S. A., & Simpson, H. M. (2009). Effects of Age and Experience on Young Driver Crashes: Review of Recent Literature. Traffic Injury Prevention, 10(3), 209-219. doi:10.1080/15389580802677807Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. (2011). Data-Mining Techniques for Exploratory Analysis of Pedestrian Crashes. Transportation Research Record: Journal of the Transportation Research Board, 2237(1), 107-116. doi:10.3141/2237-12Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. (2012). Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident Analysis & Prevention, 49, 58-72. doi:10.1016/j.aap.2011.04.025De Oña, J., López, G., & Abellán, J. (2013). Extracting decision rules from police accident reports through decision trees. Accident Analysis & Prevention, 50, 1151-1160. doi:10.1016/j.aap.2012.09.006De Oña, J., López, G., Mujalli, R., & Calvo, F. J. (2013). Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis & Prevention, 51, 1-10. doi:10.1016/j.aap.2012.10.016Pande, A., & Abdel-Aty, M. (2009). Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool. Safety Science, 47(1), 145-154. doi:10.1016/j.ssci.2007.12.001Peek-Asa, C., Britton, C., Young, T., Pawlovich, M., & Falb, S. (2010). Teenage driver crash incidence and factors influencing crash injury by rurality. Journal of Safety Research, 41(6), 487-492. doi:10.1016/j.jsr.2010.10.002Sikora, M., & Wróbel, Ł. (2013). Data-driven adaptive selection of rule quality measures for improving rule induction and filtration algorithms. International Journal of General Systems, 42(6), 594-613. doi:10.1080/03081079.2013.798901Walley, P. (1996). Inferences from Multinomial Data: Learning About a Bag of Marbles. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 3-34. doi:10.1111/j.2517-6161.1996.tb02065.xWang, Z., & Klir, G. J. (1992). Fuzzy Measure Theory. doi:10.1007/978-1-4757-5303-5Webb, G. I. (2007). Discovering Significant Patterns. Machine Learning, 68(1), 1-33. doi:10.1007/s10994-007-5006-xWitten, I. H., & Frank, E. (2002). Data mining. ACM SIGMOD Record, 31(1), 76-77. doi:10.1145/507338.50735
    corecore