305 research outputs found

    Roles of the color antisymmetric ghost propagator in the infrared QCD

    Full text link
    The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region is not purely color diagonal as in high energy region. After presenting lattice simulation of configurations produced with Kogut-Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost-gluon-ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson-Schwinger equation analysis suggests the ghost dressing function G(0)=G(0)= finite and no infrared enhancement or αG=0\alpha_G=0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as r=−G(q2)q2_r =-\frac{G(q^2)}{q^2} with G(q2)∝q−2(1+αG)G(q^2)\propto q^{-2(1+\alpha_G)} with αG=0.5\alpha_G = 0.5, if the fixed point scenario is valid. I interpret the αG=0\alpha_G=0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is Îș=αG=−0.5\kappa=\alpha_G=-0.5 and that of MILC is about -0.7. The implication for the Kugo-Ojima color confinement criterion, QCD effective coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be published in Few-Body System

    Four-quark energies in SU(2) lattice Monte Carlo using a tetrahedral geometry

    Full text link
    This contribution -- a continuation of earlier work -- reports on recent developments in the calculation and understanding of 4-quark energies generated using lattice Monte Carlo techniques.Comment: 3 pages, latex, no figures, contribution to Lattice 9

    The asymmetry of the dimension 2 gluon condensate: the zero temperature case

    Get PDF
    We provide an algebraic study of the local composite operators A_\mu A_\nu-\delta_{\mu\nu}/d A^2 and A^2, with d=4 the spacetime dimension. We prove that these are separately renormalizable to all orders in the Landau gauge. This corresponds to a renormalizable decomposition of the operator A_\mu A_\nu into its trace and traceless part. We present explicit results for the relevant renormalization group functions to three loop order, accompanied with various tests of these results. We then develop a formalism to determine the zero temperature effective potential for the corresponding condensates, and recover the already known result for \neq 0, together with <A_\mu A_\nu-\delta_{\mu\nu}/d A^2>=0, a nontrivial check that the approach is consistent with Lorentz symmetry. The formalism is such that it is readily generalizable to the finite temperature case, which shall allow a future analytical study of the electric-magnetic symmetry of the condensate, which received strong evidence from recent lattice simulations by Chernodub and Ilgenfritz, who related their results to 3 regions in the Yang-Mills phase diagram.Comment: 25 page

    Pion wave functions from holographic QCD and the role of infrared renormalons in photon-photon collisions

    Full text link
    In this article, we calculate the contribution of the higher-twist Feynman diagrams to the large-pTp_T inclusive single pion production cross section in photon-photon collisions in case of the running coupling and frozen coupling approaches within holographic QCD. We compare the resummed higher-twist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section. Also, we show that in the context of frozen coupling approach a higher-twist contribution to the photon-photon collisions cross section is normalized in terms of the pion electromagnetic form factor.Comment: 21 pages, 15 figures. arXiv admin note: text overlap with arXiv:0709.2072 by other author

    Landau Gauge Fixing on GPUs

    Full text link
    In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using 32432^4 lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.Comment: 10 pages, 3 figures and 3 table

    A Study of Degenerate Four-quark states in SU(2) Lattice Monte Carlo

    Get PDF
    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of {\bf three } degenerate partitions of the four quarks into two two-quark colour singlets. This is an extension of earlier work showing that geometries with {\bf two} degenerate partitions (e.g.\ squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with ÎČ=2.4\beta=2.4 on a 163×3216^3\times 32 lattice. The results are analysed using the correlation matrix between different euclidean times and the implications of these results are discussed for a model based on two-quark potentials.Comment: Original Raw PS file replace by a tarred, compressed and uuencoded PS fil

    The reaction ppbar -> Lambda_c-Lambda_cbar close to threshold

    Get PDF
    Predictions for the charm-production reaction antiproton-proton -> antiLambda_c-Lambda_c for energies near the threshold are presented. The calculations are performed in a meson-exchange framework in close analogy to our earlier study on antiproton-proton -> antiLambda-Lambda by connecting the two processes via SU(4) symmetry. The obtained antiLambda_c-Lambda_c production cross sections are in the order of 1 to 7 \mub, i.e. a factor of around 10 smaller than the corresponding cross sections for antiLambda-Lambda. However, they are 100 to 1000 times larger than predictions of other model calculations in the literature.Comment: 12 pages, 4 figure

    Effects of Symmetry Breaking on the Strong and Electroweak Interactions of the Vector Nonet

    Get PDF
    Starting from a chiral invariant and quark line rule conserving Lagrangian of pseudoscalar and vector nonets we introduce first and second order symmetry breaking as well as quark line rule violating terms and fit the parameters, at tree level, to many strong and electroweak processes. A number of predictions are made. The electroweak interactions are included in a manifestly gauge invariant manner. The resulting symmetry breaking pattern is discussed in detail. Specifically, for the ``strong'' interactions, we study all the vector meson masses and V -> \phi \phi decays, including isotopic spin violations. In the electroweak sector we study the { rho^0 , omega , phi } -> e^+e^- decays, { pi^+ , K^+ , K^0 } ``charge radii'', K_{l3} ``slope factor'' and the overall e^+e^- -> pi^+ pi^- process. It is hoped that the resulting model may be useful as a reasonable description of low energy physics in the range up to about 1 GeV.Comment: 43 pages (LaTeX), 5 PostScript figures are included as uuencoded-compressed-tar file at the en

    Class-Discriminative Weighted Distortion Measure for VQ-based Speaker Identification

    Full text link
    We consider the distortion measure in vector quantization based speaker identification system. The model of a speaker is a codebook generated from the set of feature vectors from the speakers voice sample. The matching is performed by evaluating the distortions between the unknown speech sample and the models in the speaker database. In this paper, we introduce a weighted distortion measure that takes into account the correlations between the known models in the database. Larger weights are assigned to vectors that have high discriminating power between the speakers and vice versa

    Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    Full text link
    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.Comment: 20 pages, no figures. Preprint number added in v2
    • 

    corecore