678 research outputs found

    1972 Ruby Yearbook

    Get PDF
    A digitized copy of the 1972 Ruby, the Ursinus College yearbook.https://digitalcommons.ursinus.edu/ruby/1075/thumbnail.jp

    Understanding summertime thermal refuge use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry

    Get PDF
    Adult Atlantic salmon (Salmo salar) return to natal rivers several months before spawning and during summer can be subjected to temperatures that exceed their upper temperature tolerance limits. Salmon use thermal refuges to minimize exposure to high temperatures, but little information exists regarding behavioral thermoregulation by adult Atlantic salmon. We examined behavioral thermoregulation by Atlantic salmon during summer in-river residence in a Quebec river with a novel combination of thermal infrared remote sensing, river temperature monitoring, and acoustic telemetry. Adults engaged in behavioural thermoregulation at cooler ambient river temperatures (17–19 °C) than previously recorded for this species and maintained body temperature within a narrow range (16–20 °C) via use of cool and warm refuges. Adults used large, stable, stratified pools as refuges, allowing multiple individuals to thermoregulate simultaneously without leaving the pool. Low river discharge and high temperatures can be physical barriers to salmon migration, preventing them from accessing suitable refuges (e.g., pools). Identifying and maintaining connectivity to thermal refuges may be critical for persistence of Atlantic salmon populations as climate changes and rivers warm

    Autonomy of Nations and Indigenous Peoples and the Environmental Release of Genetically Engineered Animals with Gene Drives

    Get PDF
    This article contends that the environmental release of genetically engineered (GE) animals with heritable traits that are patented will present a challenge to the efforts of nations and indigenous peoples to engage in self‐determination. The environmental release of such animals has been proposed on the grounds that they could function as public health tools or as solutions to the problem of agricultural insect pests. This article brings into focus two political‐economic‐legal problems that would arise with the environmental release of such organisms. To address those challenges, it is proposed that nations considering the environmental release of GE animals must take into account the underlying circumstances and policy failures that motivate arguments for the use of the modified animals. Moreover, countries must recognize that the UN International Covenant on Civil and Political Rights and the UN International Covenant on Economic, Social and Cultural Rights place on them an obligation to ensure that GE animals with patented heritable traits are not released without the substantive consent of the nations or indigenous peoples that could be affected

    Hopping in hypogravity-A rationale for a plyometric exercise countermeasure in planetary exploration missions

    Get PDF
    © 2019 Weber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Moon and Mars are considered to be future targets for human space explorations. The gravity level on the Moon and Mars amount to 16% and 38%, respectively, of Earth's gravity. Mechanical loading during the anticipated habitual activities in these hypogravity environments will most likely not be sufficient to maintain physiological integrity of astronauts unless additional exercise countermeasures are performed. Current microgravity exercise countermeasures appear to attenuate but not prevent 'space deconditioning'. However, plyometric exercises (hopping and whole body vibration) have shown promise in recent analogue bed rest studies and may be options for space exploration missions where resources will be limited compared to the ISS. This paper therefore tests the hypothesis that plyometric hop exercise in hypogravity can generate sufficient mechanical stimuli to prevent musculoskeletal deconditioning. It has been suggested that hypogravity-induced reductions in peak ground reaction force (peak vertical GRF) can be offset by increases in hopping height. Therefore, this study investigated the effects of simulated hypogravity (0.16G, 0.27G, 0.38G, and 0.7G) upon sub-maximal plyometric hopping on the Verticalised Treadmill Facility, simulating different hypogravity levels. Results show that peak vertical GRF are negatively related to simulated gravity level, but positively to hopping height. Contact times decreased with increasing gravity level but were not influenced through hopping height. In contrast, flight time increased with decreasing gravity levels and increasing hopping height (P < 0.001). The present data suggest that the anticipated hypogravity-related reductions of musculoskeletal forces during normal walking can be compensated by performing hops and therefore support the idea of plyometric hopping as a robust and resourceful exercise countermeasure in hypogravity. As maximal hop height was constrained on the VTF further research is needed to determine whether similar relationships are evident during maximal hops and other forms of jumping

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org
    • 

    corecore