4,336 research outputs found
Markets, Trust, and a Culture of Responsibility: Implications for a Family-Friendly Health Care Policy.
This paper explores the way in which a family-centered community should approach markets and market interactions and the role of markets in promoting a culture of responsibility. After making a case for the compatibility of markets and families, the paper then looks at one particular family-centered community, the Amish. The Amish are a useful example not only because of their success in creating self-reliant, family-centered communities, but also because they provide a focal point for theoretical attacks on strong, independent families and communities by those proposing alternative regimes. In particular, this paper looks at the attack against the Amish in the political theory of students of John Rawls and demonstrates the incompatibility of family-centered societies and Rawlsian ideas. It then draws parallels to the thought of Habermas and the case of Germany. The paper concludes by drawing some implications for a health care policy designed to nurture a family-centered culture of responsibility.Hayek, Rawls, Amish, Markets, Trust, Responsibility
Monolayer- and crystal-type MoO3 catalysts: Their catalytic properties in relation to their surface structures
Various MoO3 catalysts have been prepared by means of adsorption of molybdenum on supports from molybdate solutions or from the gas phase. Complete monomolecular layers of Mo6+ oxide can be prepared on the carriers Al2O3, Cr2O3, TiO2, CeO2, and ZrO2, whereas on SiO2 crystallites of MoO3 are formed. Reduction experiments show that the higher valencies of Mo are stabilized in the case of a monomolecular layer. Alcohol dehydration, pentene hydrogenation, and poisoning of these reactions with pyridine reveal that MoO2 present as a monolayer is less acidic than crystalline MoO2. On the complete monolayer catalysts investigated, mostly more than 70% of the dehydration and hydrogenation activities can be correlated with sites showing a relatively high acidity which are equivalent to 10–20% of the Mo content. The CO oxidation rates on the oxidized catalysts are antiparallel to those of the reactions on the reduced ones mentioned above; relatively basic sites preferentially chemisorb CO. The conclusion is that the activity pattern of the catalysts is a function of the acidity of the supports. It is suggested that Mo5+ ions contribute to the formation of the active acid sites after reduction with hydrogen
FTIR and XPS studies on corrosion resistant SiO2 coatings as a function of the humidity during deposition
The degradation of SiO2 coatings deposited on alloys by metal organic chemical vapour deposition (MOCVD) in sulphidizing high-temperature environments is determined by delamination and crack formation. With increasing water concentration during deposition, the crack density in silica decreases and the critical thickness for delamination of SiO2 coatings increases. This improvement is supposed to be caused by compositional changes in the SiO2 coating. In this study presence of water and silanol groups as measured by Fourier transform infrared spectroscopy(FTIR) and the Si:O ratio as measured by XPS are discussed in relation to the protective properties. The FTIRmeasurements show that the coatings deposited in more humid environments contain more silanol groups and have lower stress levels. The coatings obtained under all deposition conditions consisted of stoichiometric SiO2.0 as determined by XPS. The presence of silanol groups reduces the viscosity of the coating, and stress relaxation by viscous flow becomes enhanced, thereby improving the coating performance
A Radiation Imaging Detector Made by Postprocessing a Standard CMOS Chip
An unpackaged microchip is used as the sensing element in a miniaturized gaseous proportional chamber. Thisletter reports on the fabrication and performance of a complete radiation imaging detector based on this principle. Our fabrication schemes are based on wafer-scale and chip-scale postprocessing.\ud
Compared to hybrid-assembled gaseous detectors, our microsystem shows superior alignment precision and energy resolution, and offers the capability to unambiguously reconstruct 3-D radiation tracks on the spot.\u
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions
Discriminating talent identified junior Australian footballers using a fundamental gross athletic movement assessment
© Journal of Sports Science and Medicine. Talent identification (TID) is a pertinent component of the sports sciences, affording practitioners the opportunity to target developmental interventions to a select few; optimising financial investments. However, TID is multi-componential, requiring the recognition of immediate and prospective performance. The measurement of athletic movement skill may afford practitioners insight into the latter component given its augmented relationship with functional sport specific qualities. It is currently unknown whether athletic movement skill is a discriminant quality in junior Australian football (AF). This study aimed to discriminate talent identified junior AF players from their non-talent identified counterparts using a fundamental gross athletic movement assessment. From a total of 50 under 18 (U18) AF players; two groups were classified a priori based on selection level; talent identified (n = 25; state academy representatives) and non-talent identified (n = 25; state-based competition repre-sentatives). Players performed a fundamental gross athletic movement assessment based on the Athletic Ability Assessment (AAA), consisting of an overhead squat, double lunge (left and right legs), single leg Romanian deadlift (left and right legs), and a push up (six movement criterions). Movements were scored across three assessment points using a three-point scale (resulting in a possible score of nine for each movement). A multivariate analysis of variance revealed significant between group effects on four of the six movement criterions (d = 0.56 – 0.87; p = 0.01 – 0.02). Binary logistic regression models and a receiver operating characteristic curve inspection revealed that the overhead squat score provided the greatest group discrimination (β(SE) = -0.89(0.44); p < 0.05), with a score of 4.5 classifying 64% and 88% of the talent identified and non-talent identified groups, respectively. Results support the integration of this assessment into contemporary talent identification approaches in junior AF, as it may provide coaches with insight into a juniors developmental potential
Relative age, biological maturation and anaerobic characteristics in elite youth soccer players
Being relatively older and having an advanced biological maturation status have been associated with increased likelihood of selection in young elite soccer players. The aims of the study were to investigate the presence of a relative age effect (RAE) and the influence of birth quarter on anthropometry, biological maturity and anaerobic parameters in 374 elite Belgian youth soccer players. The sample was divided into 3 age groups, each subdivided into 4 birth quarters (BQ). Players had their APHV estimated and height, weight, SBJ, CMJ, sprint 5 and 30 m were assessed. Overall, more players were born in BQ1 (42.3%) compared with players born in BQ4 (13.7%). Further, MANCOVA revealed no differences in all parameters between the 4 BQ's, controlled for age and APHV. These results suggest that relatively youngest players can offset the RAE if they enter puberty earlier. Furthermore, the results demonstrated possible differences between BQ1 and BQ4, suggesting that caution is necessary when estimating differences between players because of large discrepancies between statistical and practical significance. These findings also show that coaches should develop realistic expectations of the physical abilities of younger players and these expectations should be made in the context of biological characteristics rather than chronological age-based standards. © Georg Thieme Verlag KG Stuttgart. New York
- …
