5,524 research outputs found
Identification of adaptive changes in an evolving population of Escherichia coli: the role of changes with regulatory and highly pleiotropic effects
A population of Escherichia coli initiated with a single clone developed extensive morphological and physiological polymorphism after being maintained for 773 generations in glucose-limited continuous culture. To understand the mechanisms of adaptation to this environment, total protein patterns of four adaptive clones and of the parent strains were examined by two-dimensional gel electrophoresis. Approximately 20% of the proteins (approximately 160 in absolute numbers) showed significantly different levels of expression in pairwise comparisons of parent and adapted clones. The extent of these changes points to the importance of mutations with regulatory and/or highly pleiotropic effects in the adaptive process. The four evolved clones all expressed fewer proteins than did the parent strain, supporting the hypothesis of energy conservation during evolutionary change. Forty-two proteins that could be assigned to known cellular functions were identified. The changes in some of them indicated that the evolved clones developed different adaptive mechanisms to glucose-limited environment. Changes were observed in the expression levels of proteins associated with translation, membrane composition, shock response, and active transport. A fraction of the changes could not be either explained or predicted from a consideration of the nature of the environment in which the clones evolved
Magnetic Interactions in Pre-main-sequence Binaries
Young stars typically have strong magnetic fields, so that the magnetospheres of newly formed close binaries can interact, dissipate energy, and produce synchrotron radiation. The V773 Tau A binary system, a pair of T Tauri stars with a 51 day orbit, displays such a signature, with peak emission taking place near periastron. This paper proposes that the observed emission arises from the change in energy stored in the composite magnetic field of the system. We model the fields using the leading order (dipole) components and show that this picture is consistent with current observations. In this model, the observed radiation accounts for a fraction of the available energy of interaction between the magnetic fields from the two stars. Assuming antisymmetry, we compute the interaction energy E int as a function of the stellar radii, the stellar magnetic field strengths, the binary semimajor axis, and orbital eccentricity, all of which can be measured independently of the synchrotron radiation. The variability in time and energetics of the synchrotron radiation depend on the details of the annihilation of magnetic fields through reconnection events, which generate electric fields that accelerate charged particles, and how those charged particles, especially fast electrons, are removed from the interaction region. However, the major qualitative features are well described by the background changes in the global magnetic configuration driven by the orbital motion. The theory can be tested by observing a collection of pre-main-sequence binary systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90771/1/0004-637X_743_2_175.pd
Single Electron Elliptic Flow Measurements in Au+Au Collisions from STAR
Recent measurements of elliptic flow (v_2) and the nuclear modification
factor (R_{CP}) of strange mesons and baryons in the intermediate p_T domain in
Au+Au collisions demonstrate a scaling with the number of constituent-quarks.
This suggests hadron production via quark coalescence from a thermalized parton
system. Measuring the elliptic flow of charmed hadrons, which are believed to
originate rather from fragmentation than from coalescence processes, might
therefore change our view of hadron production in heavy ion collisions.
While direct v_2 measurements of charmed hadrons are currently not available,
single electron v_2 at sufficiently high transverse momenta can serve as a
substitute. At transverse momenta above 2 GeV/c, the production of single
electrons from non-photonic sources is expected to be dominated by the decay of
charmed hadrons. Simulations show a strong correlation between the flow of the
charmed hadrons and the flow of their decay electrons for p_T > 2 GeV/c.
We will present preliminary STAR results from our single electron v_2
measurements from Au+Au collisions at RHIC energies.Comment: 10 pages, 7 figures Proceedings of the Hot Quarks 2004 Conference,
July 18-24 2004, Taos Valley, New Mexico, USA to be published in Journal of
Physics
Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research
Psychiatric disorders are linked to a variety of biological, psychological, and contextual causes and consequences. Laboratory studies have elucidated the importance of several key physiological and behavioral biomarkers in the study of psychiatric disorders, but much less is known about the role of these biomarkers in naturalistic settings. These gaps are largely driven by methodological barriers to assessing biomarker data rapidly, reliably, and frequently outside the clinic or laboratory. Mobile health (mHealth) tools offer new opportunities to study relevant biomarkers in concert with other types of data (e.g., self-reports, global positioning system data). This review provides an overview on the state of this emerging field and describes examples from the literature where mHealth tools have been used to measure a wide array of biomarkers in the context of psychiatric functioning (e.g., psychological stress, anxiety, autism, substance use). We also outline advantages and special considerations for incorporating mHealth tools for remote biomarker measurement into studies of psychiatric illness and treatment and identify several specific opportunities for expanding this promising methodology. Integrating mHealth tools into this area may dramatically improve psychiatric science and facilitate highly personalized clinical care of psychiatric disorders
Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa II: hivenalkuaineet ja isotoopit
The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphase–multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt ± solids ± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solid–fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical “rules of thumb”. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.Peer reviewe
Controlling Visible Light-Driven Photoconductivity in Self-Assembled Perylene Bisimide Structures
Alanine-functionalized perylene bisimides (PBI-A) are promising photoconductive materials. PBI-A self-assembles at high concentrations (mM) into highly ordered wormlike structures that are suitable for charge transport. However, we previously reported that the photoconductive properties of dried films of PBI-A did not correlate with the electronic absorption spectra as activity was only observed under UV light. Using transient absorption spectroscopy, we now demonstrate that charge separation can occur within these PBI-A structures in water under visible light. The lack of charge separation in the films is shown by DFT calculations to be due to a large ion-pair energy in the dried samples which is due to both the low dielectric environment and the change in the site of hole-localization upon drying. However, visible light photoconductivity can be induced in dried PBI-A films through the addition of methanol vapor, a suitable electron donor. The extension of PBI-A film activity into the visible region demonstrates that this class of self-assembled PBI-A structures may be of use in a heterojunction system when coupled to a suitable electron donor
Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology
This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).

Bacterial genomics reveal the complex epidemiology of an emerging pathogen in Arctic and boreal ungulates
Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors
- …