71 research outputs found

    Diaphragmatic paralysis, respiratory function, and postoperative pain after interscalene brachial plexus block with a reduced dose of 10 ml levobupivacaine 0.25% versus a 20 ml dose in patients undergoing arthroscopic shoulder surgery: study protocol for the randomized controlled double-blind Redole

    Get PDF
    Background: Arthroscopic shoulder surgery causes severe postoperative pain. An interscalene brachial plexus block provides adequate analgesia, but unintended spread of the local anesthetic administered may result in a phrenic nerve block, usually associated with a nonnegligible incidence of acute hemidiaphragmatic paralysis. The main purpose of this trial will be to analyze the incidence of hemidiaphragmatic paralysis ensuing after interscalene brachial plexus block in patients undergoing arthroscopic shoulder surgery administered a standard volume (20 ml) vs. a low volume (10 ml) of levobupivacaine 0.25%. Methods: This will be a prospective double-blind randomized controlled single-center two-arm comparative trial. Forty-eight patients will be included. The primary goal will be to ultrasonographically determine the incidence of hemidiaphragmatic paralysis by calculating the diaphragmatic thickness ratio in each group. The secondary goals will be to compare the two arms in terms of (1) decrease in forced vital capacity and (2) in forced expiratory volume at 1 s by spirometry; (3) decrease in diaphragmatic excursion by ultrasound; (4) 24-h total intravenous morphine consumption; (5) time to first opioid request of a patient-controlled analgesia pump; and (6) postoperative complications. Discussion: This trial will demonstrate that a low-volume interscalene brachial plexus block decreases hemidiaphragmatic paralysis following arthroscopic shoulder surgery according to spirometry and ultrasound measurements and does not provide inferior postoperative analgesia to the standard volume, as measured by opioid requirements. Trial registration: EudraCT and Spanish Trial Register (REec) registration number: 2019-003855-12 (registered on 7 January 2020). ClinicalTrials.gov identification number: NCT04385966 (retrospectively registered on 8 May 2020). Ethics Committee approval: EC19/093 (18 December 2019)

    Chromo- and Fluorogenic Organometallic Sensors

    Get PDF
    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O 2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre

    Optical method and device for texture quantification of photovoltaic cells

    Get PDF
    Filing Date: 2004-07-14.-- Priority Data: ES 200301666 (2003-07-15).-- International Publication Number: WO_2005008175 (20050127).This invention is related to the production engineering industry, and more particularly to the sector concerned with the production of photovoltaic cells, and therefore it also has a bearing on the alternative energy sector. The invention relates to the control of the methods used for texturing the surface of monocrystalline silicon, although it is also applicable to the textures developed on the surface of silicon and other multicrystalline and polycrystalline semiconductors

    Involving Platinum

    No full text
    • …
    corecore