145 research outputs found
The Role Of Cuticular Pheromones In Courtship Conditioning Of Drosophila Males
Courtship conditioning is an associative learning paradigm in Drosophila melanogaster, wherein male courtship behavior is modified by experience with unreceptive, previously mated females. While the training experience with mated females involves multiple sensory and behavioral interactions, we hypothesized that female cuticular hydrocarbons function as a specific chemosensory conditioned stimulus in this learning paradigm. The effects of training with mated females were determined in courtship tests with either wild-type virgin females as courtship targets, or with target flies of different genotypes that express distinct Cuticular hydrocarbon (CH) profiles. Results of tests with female targets that lacked the normal CH profile, and with male targets that expressed typically female CH profiles, indicated that components of this CH profile are both necessary and sufficient cues to elicit the effects of conditioning. Results with additional targets indicated that the female-specific 7,11-dienes, which induce naive males to court, are not essential components of the conditioned Stimulus. Rather, the learned response was significantly correlated with the levels of 9-pentacosene (9-P), a compound found in both males and females of many Drosophila strains and species. Adding 9-P to target flies showed that it stimulates courting males to attempt to copulate, and confirmed its role as a component of the conditioned stimulus by demonstrating dose-dependent increases in the expression of the learned response. Thus, 9-P can contribute significantly to the conditioned Suppression of male courtship toward targets that express this pheromone
The circadian output gene takeout is regulated by Pdp1
The circadian clock controls many circadian outputs. Although a large number of transcripts are affected by the circadian oscillator, very little is known about their regulation and function. We show here that the Drosophila takeout gene, one of the output genes of the circadian oscillator, is regulated similarly to the circadian clock genes Clock (Clk) and cry. takeout RNA levels are at constant high levels in Clk(JRK) mutants. The circadian transcription factor PAR domain protein 1 (Pdp1Ξ΅) is a transcription factor that had previously been postulated to control clock output genes, particularly genes regulated similarly to Clk. In agreement with this, we show here that Pdp1Ξ΅ is a regulator of takeout. Takeout levels are low in flies with reduced Pdp1Ξ΅ and high in flies with increased amounts of Pdp1Ξ΅. Furthermore, flies with reduced or elevated Pdp1Ξ΅ levels in the fat body display courtship defects, identifying Pdp1Ξ΅ as an important transcriptional regulator in that tissue
Variation in the Male Pheromones and Mating Success of Wild Caught Drosophila melanogaster
Drosophila melanogaster males express two primary cuticular hydrocarbons (male-predominant hydrocarbons). These act as sex pheromones by influencing female receptivity to mating. The relative quantities of these hydrocarbons vary widely among natural populations and can contribute to variation in mating success. We tested four isofemale lines collected from a wild population to assess the effect of intrapopulation variation in male-predominant hydrocarbons on mating success. The receptivity of laboratory females to males of the four wild-caught lines varied significantly, but not consistently in the direction predicted by variation in male-predominant hydrocarbons. Receptivity of the wild-caught females to laboratory males also varied significantly, but females from lines with male-predominant hydrocarbon profiles closer to a more cosmopolitan one did not show a correspondingly strong mating bias toward a cosmopolitan male. Among wild-caught lines, the male-specific ejaculatory bulb lipid, cis-vaccenyl acetate, varied more than two-fold, but was not associated with variation in male mating success. We observed a strong inverse relationship between the receptivity of wild-caught females and the mating success of males from their own lines, when tested with laboratory flies of the opposite sex
Functional Dissection of the Neural Substrates for Sexual Behaviors in Drosophila melanogaster
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened βΌ1000 GAL4 lines, using assays for general courtship, maleβmale interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces maleβmale courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation
Sensory Integration Regulating Male Courtship Behavior in Drosophila
The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naΓ―ve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior
Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila
Rapid evolution of gene expression patterns responsible for pheromone production in 24 species of Drosophila was mapped to simple mutations within the regulatory domain of the desatF gene
A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster
Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions
Degree of adaptive male mate choice is positively correlated with female quality variance
When the cost of reproduction for males and variance in female quality are high, males are predicted to show adaptive mate choice. Using Drosophila melanogaster, we test this prediction and show that sperm limited males preferentially mated with young and/or well fed females. The preferred females had higher reproductive output β direct evidence of adaptive precopulatory male mate choice. Our most striking finding is the strong positive correlation between the degree of mating bias showed by the males and the variance in the fitness of the females. We discuss the possible mechanism for such adaptive male mate choice and propose that such choice has important consequences with respect to the existing understanding of the mating system and the evolution of aging
- β¦