11 research outputs found

    Morphological analysis of the sheathed flagellum of Brucella melitensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It was recently shown that <it>B. melitensis </it>is flagellated. However, the flagellar structure remains poorly described.</p> <p>Findings</p> <p>We analyzed the structure of the polar sheathed flagellum of <it>B. melitensis </it>by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The Δ<it>ftcR</it>, Δ<it>fliF</it>, Δ<it>flgE </it>and Δ<it>fliC </it>flagellar mutants still produce an empty sheath.</p> <p>Conclusions</p> <p>Our results demonstrate that the flagellum of <it>B. melitensis </it>has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator.</p

    Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum

    Get PDF
    We evaluated the bactericidal activity of Bdellovibrio bacteriovorus, strain HD100, within blood sera against bacterial strains commonly associated with bacteremic infections, including E. coli, Klebsiella pneumoniae and Salmonella enterica. Tests show that B. bacteriovorus HD100 is not susceptible to serum complement or its bactericidal activity. After a two hour exposure to human sera, the prey populations decreased 15- to 7,300-fold due to the serum complement activity while, in contrast, the B. bacteriovorus HD100 population showed a loss of only 33%. Dot blot analyses showed that this is not due to the absence of antibodies against this predator. Predation in human serum was inhibited, though, by both the osmolality and serum albumin. The activity of B. bacteriovorus HD100 showed a sharp transition between 200 and 250 mOsm/kg, and was progressively reduced as the osmolality increased. Serum albumin also acted to inhibit predation by binding to and coating the predatory cells. This was confirmed via dot blot analyses and confocal microscopy. The results from both the osmolality and serum albumin tests were incorporated into a numerical model describing bacterial predation of pathogens. In conclusion, both of these factors inhibit predation and, as such, they limit its effectiveness against pathogenic prey located within sera

    Suicide bomb attack identification and analytics through data mining techniques

    No full text
    Suicide bomb attacks are a high priority concern nowadays for every country in the world. They are a massively destructive criminal activity known as terrorism where one explodes a bomb attached to himself or herself, usually in a public place, taking the lives of many. Terrorist activity in different regions of the world depends and varies according to geopolitical situations and significant regional factors. There has been no significant work performed previously by utilizing the Pakistani suicide attack dataset and no data mining-based solutions have been given related to suicide attacks. This paper aims to contribute to the counterterrorism initiative for the safety of this world against suicide bomb attacks by extracting hidden patterns from suicidal bombing attack data. In order to analyze the psychology of suicide bombers and find a correlation between suicide attacks and the prediction of the next possible venue for terrorist activities, visualization analysis is performed and data mining techniques of classification, clustering and association rule mining are incorporated. For classification, Naïve Bayes, ID3 and J48 algorithms are applied on distinctive selected attributes. The results exhibited by classification show high accuracy against all three algorithms applied, i.e., 73.2%, 73.8% and 75.4%. We adapt the K-means algorithm to perform clustering and, consequently, the risk of blast intensity is identified in a particular location. Frequent patterns are also obtained through the Apriori algorithm for the association rule to extract the factors involved in suicide attacks

    FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae

    No full text
    The flagellar regulon of Brucella melitensis 16M contains 31 genes clustered in three loci on the small chromosome. These genes encode a polar sheathed flagellum that is transiently expressed during vegetative growth and required for persistent infection in a mouse model. By following the expression of three flagellar genes (fliF, flgE, and fliC, corresponding to the MS ring, hook, and filament monomer, respectively), we identified a new regulator gene, ftcR (flagellar two-component regulator). Inactivation of ftcR led to a decrease in flagellar gene expression and to impaired Brucella virulence. FtcR has a two-component response regulator domain as well a DNA binding domain and is encoded in the first flagellar locus of B. melitensis. Both the ftcR sequence and its genomic context are conserved in other related α-proteobacteria. During vegetative growth in rich medium, ftcR expression showed a peak during the early exponential phase that paralleled fliF gene expression. VjbR, a quorum-sensing regulator of the LuxR family, was previously found to control fliF and flgE gene expression. Here, we provide some new elements suggesting that the effect of VjbR on these flagellar genes is mediated by FtcR. We found that ftcR expression is partially under the control of VjbR and that the expression in trans of ftcR in a vjbR mutant restored the production of the hook protein (FlgE). Finally, FtcR binds directly to the upstream region of the fliF gene. Therefore, our data support the role of FtcR as a flagellar master regulator in B. melitensis and perhaps in other related α-proteobacteria

    Brucella melitensis Cyclic di-GMP Phosphodiesterase BpdA Controls Expression of Flagellar Genes▿†

    No full text
    Brucella melitensis encounters a variety of conditions and stimuli during its life cycle—including environmental growth, intracellular infection, and extracellular dissemination—which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP

    MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis

    No full text
    Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis
    corecore