128 research outputs found

    Combined population genomic screening for three high-risk conditions in Australia: a modelling study

    Get PDF
    BACKGROUND: No previous health-economic evaluation has assessed the impact and cost-effectiveness of offering combined adult population genomic screening for mutliple high-risk conditions in a national public healthcare system. METHODS: This modeling study assessed the impact of offering combined genomic screening for hereditary breast and ovarian cancer, Lynch syndrome and familial hypercholesterolaemia to all young adults in Australia, compared with the current practice of clinical criteria-based testing for each condition separately. The intervention of genomic screening, assumed as an up-front single cost in the first annual model cycle, would detect pathogenic variants in seven high-risk genes. The simulated population was 18–40 year-olds (8,324,242 individuals), modelling per-sample test costs ranging AU100–100–1200 (base-case AU200)fromtheyear2023onwardswithtestinguptakeof50FINDINGS:Overthepopulationlifetime(toage80years),themodelestimatedthatgenomicscreeningper−100,000individualswouldleadto747QALYsgainedbypreventing63cancers,31CHDcasesand97deaths.Inthetotalmodelpopulation,thiswouldtranslateto31,094QALYsgainedbypreventing2612cancers,542non−fatalCHDeventsand4047totaldeaths.AtAU200) from the year 2023 onwards with testing uptake of 50%. Interventions for identified high-risk variant carriers follow current Australian guidelines, modelling imperfect uptake and adherence. Outcome measures were morbidity and mortality due to cancer (breast, ovarian, colorectal and endometrial) and coronary heart disease (CHD) over a lifetime horizon, from healthcare-system and societal perspectives. Outcomes included quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER), discounted 5% annually (with 3% discounting in scenario analysis). FINDINGS: Over the population lifetime (to age 80 years), the model estimated that genomic screening per-100,000 individuals would lead to 747 QALYs gained by preventing 63 cancers, 31 CHD cases and 97 deaths. In the total model population, this would translate to 31,094 QALYs gained by preventing 2612 cancers, 542 non-fatal CHD events and 4047 total deaths. At AU200 per-test, genomic screening would require an investment of AU832millionforscreeningof50832 million for screening of 50% of the population. Our findings suggest that this intervention would be cost-effective from a healthcare-system perspective, yielding an ICER of AU23,926 (∼£12,050/€14,110/US15,345)perQALYgainedoverthestatusquo.Inscenarioanalysiswith315,345) per QALY gained over the status quo. In scenario analysis with 3% discounting, an ICER of AU4758/QALY was obtained. Sensitivity analysis for the base case indicated that combined genomic screening would be cost-effective under 70% of simulations, cost-saving under 25% and not cost-effective under 5%. Threshold analysis showed that genomic screening would be cost-effective under the AU50,000/QALYwillingness−to−paythresholdatper−testcostsuptoAU50,000/QALY willingness-to-pay threshold at per-test costs up to AU325 (∼£164/€192/US$208). INTERPRETATION: Our findings suggest that offering combined genomic screening for high-risk conditions to young adults would be cost-effective in the Australian public healthcare system, at currently realistic testing costs. Other matters, including psychosocial impacts, ethical and societal issues, and implementation challenges, also need consideration. FUNDING: Australian Government, Department of Health, Medical Research Future Fund, Genomics Health Futures Mission (APP2009024). National Heart Foundation Future Leader Fellowship (102604)

    Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons

    Get PDF
    The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting

    Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure

    Get PDF
    L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it

    Repurposing NGO data for better research outcomes: A scoping review of the use and secondary analysis of NGO data in health policy and systems research

    Get PDF
    Background Non-government organisations (NGOs) collect and generate vast amounts of potentially rich data, most of which are not used for research purposes. Secondary analysis of NGO data (their use and analysis in a study for which they were not originally collected) presents an important but largely unrealised opportunity to provide new research insights in critical areas including the evaluation of health policy and programmes. Methods A scoping review of the published literature was performed to identify the extent to which secondary analysis of NGO data has been used in health policy and systems research (HPSR). A tiered analytic approach provided a comprehensive overview and descriptive analyses of the studies which: 1) used data produced or collected by or about NGOs; 2) performed secondary analysis of the NGO data (beyond use of an NGO report as a supporting reference); 3) used NGO-collected clinical data. Results Of the 156 studies which performed secondary analysis of NGO-produced or collected data, 64% (n=100) used NGO-produced reports (e.g. to critique NGO activities and as a contextual reference) and 8% (n=13) analysed NGO-collected clinical data.. Of the studies, 55% investigated service delivery research topics, with 48% undertaken in developing countries and 17% in both developing and developed. NGO-collected clinical data enabled HPSR within marginalised groups (e.g. migrants, people in conflict-affected areas), with some limitations such as inconsistencies and missing data. Conclusion We found evidence that NGO-collected and produced data are most commonly perceived as a source of supporting evidence for HPSR and not as primary source data. However, these data can facilitate research in under-researched marginalised groups and in contexts that are hard to reach by academics, such as conflict-affected areas. NGO–academic collaboration could help address issues of NGO data quality to facilitate their more widespread use in research. Their use could enable relevant and timely research in the areas of health policy, programme evaluation and advocacy to improve health and reduce health inequalities, especially in marginalised groups and developing countries

    Alternative Strategies for Coping with Traffic Congestion

    Full text link
    Traffic congestion is a disruptive fact of urban life. It inflicts delays and frustrations in virtually all major cities in the world, new or old, rich or poor. Although many countermeasures have been tried, it is hard to name a city in which there is much satisfaction with the existing state of affairs. About the only positive aspect of congestion is that it reflects the pulse of life, a demand for travel and trade that typically accompanies economic activity

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice

    Get PDF
    Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na(+),K(+)-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+),K(+)-ATPase α3, including upon the K(+) pore and predicted K(+) binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+),K(+)-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC

    Technological change and urban form

    No full text
    In this paper the author previews a current international study of impacts of technological change on urban activities and interactions, and hence on urban built form. He considers various trends and factors of technological change, and the mechanisms through which they are influencing urban form. The nature of this impact is also discussed. The author introduces two basic measures of urban form and interaction, and maps urban activities and interactions onto this two-dimensional space. Some of the broader impacts of technological change may then be considered as movements in this space. Information systems for monitoring the effects of technological change, for quantitative analysis of these impacts, and for prediction of further impacts of change are also discussed. Last, the implications for planning are considered. One possible model for use at various levels in this study is outlined in an appendix.
    • …
    corecore