206 research outputs found

    Prediction of inter-particle adhesion force from surface energy and surface roughness

    Get PDF
    Fine powder flow is a topic of great interest to industry, in particular for the pharmaceutical industry; a major concern being their poor flow behavior due to high cohesion. In this study, cohesion reduction, produced via surface modification, at the particle scale as well as bulk scale is addressed. The adhesion force model of Derjaguin-Muller-Toporov (DMT) was utilized to quantify the inter-particle adhesion force of both pure and surface modified fine aluminum powders (∼8 μm in size). Inverse Gas Chromatography was utilized for the determination of surface energy of the samples, and Atomic Force Microscopy was utilized to evaluate surface roughness of the powders. Surface modification of the original aluminum powders was done for the purpose of reduction in cohesiveness and improvement in flowability, employing either silane surface treatment or dry mechanical coating of nano-particles on the surface of original powders. For selected samples, the AFM was utilized for direct evaluation of the particle pull-off force. The results indicated that surface modification reduced the surface energy and altered the surface nano-roughness, resulting in drastic reduction of the inter-particle adhesion force. The particle bond number values were computed based on either the inter-particle adhesion force from the DMT model or the inter-particle pull-off force obtained from direct AFM measurements. Surface modification resulted in two to three fold reductions in the Bond number. In order to examine the influence of the particle scale property such as the Bond number on the bulk-scale flow characterization, Angle of Repose measurements were done and showed good qualitative agreements with the Bond number and acid/base surface characteristics of the powders. The results indicate a promising method that may be used to predict flow behavior of original (cohesive) and surface modified (previously cohesive) powders utilizing very small samples

    MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Get PDF
    Background: Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods: A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results: MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion: Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations

    Plant lectins: the ties that bind in root symbiosis and plant defense

    Get PDF
    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general

    Characterization techniques for studying the properties of nanocarriers for systemic delivery

    Get PDF
    Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed

    Isolation and characterization of a Forssman antigen-binding lectin from velvet bean ( Mucuna derringiana ) seeds

    Full text link
    A Forssman antigen (GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer)-binding lectin has been purified from velvet bean ( Mucuna derringiana ) seeds by a combination of affinity chromatography and reversed phase HPLC. This lectin agglutinates both native and trypsin-treated sheep erythrocytes as well as trypsinized rabbit erythrocytes, but neither native rabbit nor human erythrocytes, irrespective of blood group type. SDS-PAGE and gel filtration chromatography reveal the lectin to be a homodimer consisting of two 54 kDa subunits linked by non-covalent bonds. The results obtained by quantitative precipitation, haemagglutination inhibition and TLC overlay assays indicate that the Mucuna lectin specifically recognizes Forssman antigen and Forssman disaccharide (GalNAcα1-3GalNAc)-related structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45669/1/10719_2004_Article_BF00731278.pd

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Temperature dependence of the heat capacity of water in small pores

    Get PDF
    "February 1990.
    corecore