115 research outputs found

    Data-Oblivious Stream Productivity

    Full text link
    We are concerned with demonstrating productivity of specifications of infinite streams of data, based on orthogonal rewrite rules. In general, this property is undecidable, but for restricted formats computable sufficient conditions can be obtained. The usual analysis disregards the identity of data, thus leading to approaches that we call data-oblivious. We present a method that is provably optimal among all such data-oblivious approaches. This means that in order to improve on the algorithm in this paper one has to proceed in a data-aware fashion

    Stream Productivity by Outermost Termination

    Full text link
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. A core property is productivity: unfolding the equations produces the intended stream in the limit. In this paper we show that productivity is equivalent to termination with respect to the balanced outermost strategy of a TRS obtained by adding an additional rule. For specifications not involving branching symbols balancedness is obtained for free, by which tools for proving outermost termination can be used to prove productivity fully automatically

    Classifying Non-periodic Sequences by Permutation Transducers

    Get PDF
    Contains fulltext : 176554.pdf (publisher's version ) (Closed access) Contains fulltext : 176554pre.pdf (preprint version ) (Open Access

    Effect of the Output of the System in Signal Detection

    Get PDF
    We analyze the consequences that the choice of the output of the system has in the efficiency of signal detection. It is shown that the signal and the signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic resonance, strongly depend on the form of the output. In particular, the SNR may be enhanced for an adequate output.Comment: 4 pages, RevTex, 6 PostScript figure

    Proving looping and non-looping non-termination by finite automata

    Get PDF
    A new technique is presented to prove non-termination of term rewriting. The basic idea is to find a non-empty regular language of terms that is closed under rewriting and does not contain normal forms. It is automated by representing the language by a tree automaton with a fixed number of states, and expressing the mentioned requirements in a SAT formula. Satisfiability of this formula implies non-termination. Our approach succeeds for many examples where all earlier techniques fail, for instance for the S-rule from combinatory logic. Keywords: non-termination, finite automata, regular language

    Termination and Productivity

    Get PDF
    Klop, J.W. [Promotor]Vrijer, R.C. de [Copromotor

    Local Termination: theory and practice

    Get PDF
    The characterisation of termination using well-founded monotone algebras has been a milestone on the way to automated termination techniques, of which we have seen an extensive development over the past years. Both the semantic characterisation and most known termination methods are concerned with global termination, uniformly of all the terms of a term rewriting system (TRS). In this paper we consider local termination, of specific sets of terms within a given TRS. The principal goal of this paper is generalising the semantic characterisation of global termination to local termination. This is made possible by admitting the well-founded monotone algebras to be partial. We also extend our approach to local relative termination. The interest in local termination naturally arises in program verification, where one is probably interested only in sensible inputs, or just wants to characterise the set of inputs for which a program terminates. Local termination will be also be of interest when dealing with a specific class of terms within a TRS that is known to be non-terminating, such as combinatory logic (CL) or a TRS encoding recursive program schemes or Turing machines. We show how some of the well-known techniques for proving global termination, such as stepwise removal of rewrite rules and semantic labelling, can be adapted to the local case. We also describe transformations reducing local to global termination problems. The resulting techniques for proving local termination have in some cases already been automated. One of our applications concerns the characterisation of the terminating S-terms in CL as regular language. Previously this language had already been found via a tedious analysis of the reduction behaviour of S-terms. These findings have now been vindicated by a fully automated and verified proof

    Braids via term rewriting

    Get PDF
    We present a brief introduction to braids, in particular simple positive braids, with a double emphasis: first, we focus on term rewriting techniques, in particular, reduction diagrams and decreasing diagrams. The second focus is our employment of the colored braid notation next to the more familiar Artin notation. Whereas the latter is a relative, position dependent, notation, the former is an absolute notation that seems more suitable for term rewriting techniques such as symbol tracing. Artin's equations translate in this notation to simple word inversions. With these points of departure we treat several basic properties of positive braids, in particular related to the word problem, confluence property, projection equivalence, and the congruence property. In our introduction the beautiful diamond known as the permutohedron plays a decisive role

    Transducer degrees: atoms, infima and suprema

    Get PDF
    Although finite state transducers are very natural and simple devices, surprisingly little is known about the transducibility relation they induce on streams (infinite words). We collect some intriguing problems that have been unsolved since several years. The transducibility relation arising from finite state transduction induces a partial order of stream degrees, which we call Transducer degrees, analogous to the well-known Turing degrees or degrees of unsolvability. We show that there are pairs of degrees without supremum and without infimum. The former result is somewhat surprising since every finite set of degrees has a supremum if we strengthen the machine model to Turing machines, but also if we weaken it to Mealy machines
    corecore