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Abstract. Transducers order infinite sequences into natural classes, but
permutation transducers provide a finer classification, respecting certain
changes to finite segments. We investigate this hierarchy for non-periodic
sequences over {0, 1} in which the groups of 0s and 1s grow according
to simple functions like polynomials. In this hierarchy we find infinite
strictly ascending chains of sequences, all being equivalent with respect
to ordinary transducers.

1 Introduction

Equivalence under transducers organizes infinite sequences into a hierarchy with
interesting properties, as ongoing research is revealing, see for example [3, 6] and
the conference paper [5] at DLT 2016. In this setting the main definition is that
for two sequences σ, τ we have that σ ≥ τ if and only if there exists a transducer
T that produces τ when consuming σ. Here a transducer is a deterministic
automaton producing output strings on every transition. Two sequences σ, τ are
called equivalent, notation σ ∼ τ if both σ ≥ τ and τ ≥ σ. A straightforward
construction shows that σ ∼ uσ for any sequence σ and any finite string u,
so prepending or removing a finite initial word remains inside the class. The
pre-order ≥ gives rise to an order on the equivalences classes of ∼; the bottom
element in this order consists of the class of ultimately periodic sequences.

In the current paper we investigate a more fine-grained hierarchy on se-
quences based on an alternative pre-order ≥p. Here prepending or removing
initial segments may change the class, but other basic properties are kept, like
σ ≥p h(σ) for any morphism h. The idea is that we add the requirement that
transducers should be permutation transducers. This means that not only for
every state and symbol there is exactly one outgoing arrow (as is required by
determinism), but also exactly one incoming arrow: it will thus be a permutation
automaton (see [1, 7, 8]) with output, just like a finite state transducer is a DFA
with output. Our original motivation for permutation transducers was to be able
to compare and classify two-sided sequences as was elaborated in [2]. There we



already made some first investigations on ordering (one-sided) sequences by per-
mutation transducers, raising several issues that we worked out in the current
paper.

So we define σ ≥p τ if and only if a permutation transducer P exists such
that P (σ) = τ , and σ ∼p τ if and only if both σ ≥p τ and τ ≥p σ. In [2] we
already showed that 0ω 6∼p 10ω, a clear illustration that initial segments matter
in this context. Again the pre-order ≥p on sequences gives rise to an order on ∼p-
equivalence classes; here the bottom element is the class of all periodic sequences.
In [2] we showed that the ultimately periodic sequences that are not periodic
form an atomic class. Here the focus is on sequences that are not ultimately
periodic. In particular, we look at sequences of the shape

〈f〉 = 10f(0)10f(1)10f(2) · · · and [[f ]] = 0f(0)1f(1)0f(2) · · · ,

for various functions f : N → N, in particular polynomials. Based on ordinary
transducers one has 〈f〉 ∼ [[f ]] if f(n) > 0 for all n ∈ N, and for all linear
f, g it holds 〈f〉 ∼ 〈g〉. A main result of [4] states that the class containing the
sequences of the shape 〈f〉 for f linear is atomic, that is, if 〈f〉 ≥ σ for f linear,
then either σ ≥ 〈f〉 or σ is ultimately periodic. In [3] it was shown that a similar
result holds for quadratic functions, while in [6, 5] it was shown that for higher
degree it does not hold. Here we are interested in considering ≥p and ∼p instead.

In [2] we already showed that 〈f〉 ∼p 〈g〉 for f, g linear. Here we show that
the corresponding class is not atomic: we show that for ascending f we have
〈f〉 ≥p [[f ]] but not the other way around, and we even show that the class
containing 〈f〉 for linear f is an upper bound of infinitely many distinct classes,
in particular

[[n]] <p [[n+ 2]] <p [[n+ 4]] <p [[n+ 8]] <p [[n+ 16]] <p · · · ≤p 〈n〉.

We write σ <p τ if τ ≥p σ but not σ ≥p τ , and use [[f(n)]] as shorthand for [[n 7→
f(n)]], and similarly for 〈·〉. While all 〈f〉 for f quadratic are equivalent under
ordinary transduction, we show that this does not hold for ∼p; in particular, we
obtain the infinite ascending chain

〈(n+1)2〉 <p 〈n2〉 <p 〈(n−1)2〉 <p 〈(n−2)2〉 <p 〈(n−4)2〉 <p 〈(n−8)2〉 <p · · · .

1|ε

0|ε

1|ε

0|1

1|ε

0|0

1|ε

0|ε

Typically, for proving σ <p τ the easier part
is giving an explicit permutation transducer P
satisfying P (τ) = σ. The hard part is showing
that a permutation transducer for the other way
around does not exist. For instance, the easy part
of showing [[n]] <p [[n + 2]] can be done using
the following permutation transducer, proving
[[n + 2]] ≥p [[n]]. In presenting a transducer by
a picture an arrow labeled by a|u means that an
input symbol a is consumed and the string u is
produced as output. The initial state is indicated by an incoming arrow not



starting in a state. When consuming [[n+ 2]] = 02130415 · · · by this permutation
transducer indeed [[n]] = 1021304 · · · is produced. Here the two 1-arrows between
the two top states are never used, and may also produce anything else.

An even simpler ordinary transducer doing the same job, but which is not a
permutation transducer, is easily found, as [[n]] can also be obtained from [[n+2]]
by simply putting a single symbol 1 in front.

The remaining proof obligation, that no permutation transducer exists trans-
forming [[n]] to [[n+ 2]], is much harder. For doing this we investigate the pattern
of any sequence that can be obtained by applying a permutation transducer to
[[n]], and then prove that [[n+2]] does not satisfy this pattern. For all other claims
in this paper containing ’<p’ we give similar arguments all being instances of
the following three cases. The first case investigates the creation of isolated 1s,
leading to [[f ]] <p 〈f〉 for ascending f . The second one investigates transducts of
〈f〉 and [[f ]] for those f (such as f(n) = n!) for which for every m there exists N
such that f(n) ≡ 0 mod m whenever n > N . The third one investigates trans-
ducts of 〈f〉 and [[f ]] for f , such as polynomials, for which n 7→ f(n) mod m is
periodic for every m.

We consider four basic ways to transform functions f : N→ N: transforming
f(n) to f(n) + k and to f(n + k) for any k ≥ 1, and to kf(n) and to f(kn)
for any k > 1. For all of them we investigate how 〈f(n)〉 and [[f(n)]] relate
to their transformed variants, both with respect to ordinary transducers and
permutation transducers.

The paper is organized as follows. We start by preliminaries in Section 2.
In Section 3 we classify permutation transducts of particular sequences σ, in
order to be able to prove σ 6≥p τ for certain τ . In Section 4 we investigate the
effect of transforming f in the above given four ways. In Section 5 we investigate
[[f ]] and 〈f〉 for linear functions f ; in particular, we give an infinite strictly
ascending chain of them. In Section 6 we investigate polynomials of higher degree;
in particular, we give an infinite strictly ascending chain of sequences 〈f〉 for
quadratic polynomials f .

2 Preliminaries

In the following we assume Σ = {0, 1}.

Definition 1. A finite state transducer T = (Q, q0, δ, λ) consists of a finite set
Q, q0 ∈ Q, δ : Q × Σ → Q, λ : Q × Σ → Σ∗. For σ : N → Σ we define
T (σ) = λ(q0, σ(0))λ(q1, σ(1))λ(q2, σ(2)) · · · for qi defined by qi+1 = δ(qi, σ(i))
for i ≥ 0.

A permutation transducer over Σ is a finite state transducer T = (Q, q0, δ, λ)
with the additional requirement that for every a ∈ Σ the function q 7→ δ(q, a) is
a bijection from Q to Q.

For σ, τ : N→ Σ we define ≥p, ∼p and >p by

σ ≥p τ ⇐⇒ ∃ permutation transducer T : τ = T (σ),

σ ∼p τ ⇐⇒ σ ≥p τ ∧ τ ≥p σ, σ >p τ ⇐⇒ σ ≥p τ ∧ ¬(τ ≥p σ).



In drawing pictures for transducers we write an arrow from p to q labeled by
a|u if δ(p, a) = q and λ(p, a) = u. We use ≥,∼, > for the similar relations on se-
quences based on ordinary finite state transducers, that is, without the additional
bijectivity requirement. These were studied extensively in [4, 3, 6, 5]. To see the
effect of the additional requirement of permutation transducers, throughout the
paper in presenting properties of ≥p,∼p, >p we often present the corresponding
properties of ≥,∼, >.

For a homomorphism h : Σ → Σ+ the transducer Th = ({q0}, q0, δ, λ) defined
by δ(q0, a) = q0 and λ(q0, a) = h(a) for all a ∈ Σ is a permutation transducer
satisfying Th(σ) = h(σ) for all σ, proving that σ ≥p h(σ). In particular, for
choosing h to be the identity we obtain that ≥p is reflexive. A straightforward
construction given in [2] shows that ≥p is transitive. Hence ≥p is a pre-order,
yielding a partial order on equivalence classes with respect to the equivalence
relation ∼p. By defining h(a) = 0 for all a ∈ Σ we obtain Th(σ) = 0ω for every σ.
Hence the equivalence class of 0ω is the bottom element in this order; it consists
of all (purely) periodic sequences as was shown in [2].

A partial permutation transducer T = (Q, q0, δ, λ) consists of a finite set Q
and initial state q0 ∈ Q, together with a partial function δ : Q × Σ → Q such
that for every q ∈ Q, a ∈ Σ there is at most one q′ ∈ Q such that δ(q′, a) = q,
and λ : Q×Σ → Σ∗ is a partial function that is defined on the same pairs that δ
is defined for. Thus, in a permutation transducer for every symbol a ∈ Σ there is
exactly one incoming and exactly one outgoing a-arrow for every state q ∈ Q, but
in a partial permutation transducer ’exactly one’ is weakened to ’at most one’.
As observed in [2], just like every partial permutation of a set can be extended
to a permutation, every partial permutation transducer can be extended to a
permutation transducer. Sometimes we will present a permutation transducer by
only giving a partial permutation transducer and leaving the extension implicit.

From the introduction recall the definitions

〈f〉 = σf = 10f(0)10f(1)10f(2) · · · and [[f ]] = 0f(0)1f(1)0f(2) · · ·

for any f : N → N. For the latter it is natural to require f(n) > 0 for all
n > 0, to avoid collapsing groups; we will say that f is positive if it satisfies
this property. Note that every sequence σ that is not eventually constant has a
natural representation [[f ]] for some (positive) function f . The same is true for
〈f〉 if σ(0) = 1, with f usually not positive.

Writing 〈f(n)〉 for 〈f〉, we obtain 〈n〉 = 11010010001 · · · , and 〈n + 1〉 =
101001000 · · · , so 〈n + 1〉 = tail(〈n〉). Using similar shorthand notation, [[n]] =
1102130415 · · · , and [[n+ 1]] = 0112031405 · · · , so Th([[n]]) = [[n+ 1]] and Th([[n+
1]]) = [[n]] for h(0) = 1, h(1) = 0, proving [[n]] ∼p [[n+ 1]].

We continue with a fruitful lemma.

Lemma 1. Let P be a permutation transducer over a finite alphabet Σ. Then
there exists an integer N > 0 such that for every state q and every u ∈ Σ+ it
holds that δ(q, uN ) = q.



Proof. Let n be the number of states. Then q 7→ δ(q, u) is a permutation on the
n states. Choose N to be the least common multiple of all k with k ≤ n. Then
q 7→ δ(q, uN ) = (q 7→ δ(q, u))N is the identity. ut

Proposition 1. For every positive function f : N→ N holds

• 〈f〉 ∼ [[f ]], and
• 〈f〉 ≥p [[f ]].

Proof. This is proved by the following two transducers.

1|ε

0|1

1|ε

0|0
0|10

1|0

1|10

0|0

0|101|110

The left one is a permutation transducer replacing sequences of consecutive 0’s
that are demarcated by a single 1, alternatingly by the same number of 0’s or
1’s; hence transforming 〈f〉 to [[f ]], showing 〈f〉 ≥p [[f ]] and thus also 〈f〉 ≥ [[f ]].

The right one is an ordinary transducer (but not a permutation transducer)
transforming [[f ]] to 〈f〉, showing that [[f ]] ≥ 〈f〉. Together with the just observed
〈f〉 ≥ [[f ]] this proves 〈f〉 ∼ [[f ]]. ut

Now we show that [[f ]] ≥p 〈f〉 does not generally hold: for certain f no per-
mutation transducer P exists transforming [[f ]] to 〈f〉. The key idea is that the
isolated 1s in 〈f〉 can not be created when the input only contains big groups of
0s and 1s as in [[f ]]. In fact we prove the following stronger result.

Theorem 1. Let f, g : N→ N satisfy limn→∞ f(n) = limn→∞ g(n) =∞. Then
no permutation transducer P such that P ([[f ]]) = 〈g〉.

Proof. Assume such a P = (Q, q0, δ, λ) exists. Use Lemma 1 to choose p such
that δ(q, 0p) = δ(q, 1p) = q for all states q. Write u(q, 0) = λ(q, 0p) and u(q, 1) =
λ(q, 1p) for all states q. Since limn→∞ f(n) = ∞ a number N exists such that
f(n) > 2p for all n ≥ N . Hence beyond a finite initial part, the sequence [[f ]] is
composed of strings 0k and 1k for k > 2p. For each such string the permutation
transducer P produces a prefix of u(q, i)ω that starts by u(q, i)2 for some state
q and i ∈ {0, 1}. Beyond a finite initial part, the resulting output 〈g〉 is the
concatenation of such prefixes. Assume that one of the occurring strings u(q, i)2

contains a symbol 1. Then it contains at least two symbols 1 at distance at most
m, where m is the maximal size of all u(q, i). Since limn→∞ g(n) =∞, the total
number of occurrences of u(q, i)2 in 〈g〉 that contain a symbol 1, is finite. This
contradicts the fact that 〈g〉 contains infinitely many 1s. ut

For proving more claims of the type σ 6≥p τ we typically investigate the shape
of sequences P (σ), the transducts of σ: then it remains to show that τ is not of
the required shape. In the next section we give a number of results of this type.



3 Classifying Transducts

We want to classify permutation transducts of sequences of the shape 〈f〉 and [[f ]]
for well-known functions f , like polynomials. A key property of polynomials f
that will be exploited is that the function n 7→ (f(n) mod m) is periodic for every
m > 0. We start by a class of functions for which the analysis is slightly simpler,
namely functions like f(n) = n! for which n 7→ (f(n) mod m) is ultimately 0 for
every m > 0.

Theorem 2. Let f : N → N be a positive function for which for every m > 0
there exists N ∈ N such that f(n) ≡ 0 mod m for all n > N . If [[f ]] ≥p σ then
there exist u, c, d ∈ Σ∗ and b, h ∈ N such that

σ = u

∞∏
i=0

(
cf(b+2i)/hdf(b+2i+1)/h

)
= ucf(b)/hdf(b+1)/hcf(b+2)/hdf(b+3)/h · · · .

Proof. Let P = (Q, q0, δ, λ) be a permutation transducer such that P ([[f ]]) = σ.
By Lemma 1 there exists h such that δ(q, 0h) = δ(q, 1h) = q for all q. Choose
b even such that f(i) ≡ 0 mod h for all i ≥ b. Let u be the output of P of the
initial part v = 0f(0)1f(1) · · · 1f(b−1), and let q = δ(q0, v). Let c = λ(q, 0h) and
d = λ(q, 1h). Then the next blocks 0f(b), 1f(b+1), 0f(b+2), 1f(b+3), . . . produce
output cf(b)/hdf(b+1)/hcf(b+2)/hdf(b+3)/h · · · , exactly the pattern claimed. ut

Corollary 1. [[n!]] 6≥p [[n!− 1]].

Proof. Suppose that [[n!]] ≥p [[n!− 1]]. Then by Theorem 2 we obtain

[[n!− 1]] = ucb!/hd(b+1)!/hc(b+2)!/hd(b+3)!/h · · · .

Since in [[n!− 1]] only groups of 0s and 1s occur of increasing size, both c and d
either consist only of 0s or only of 1s. Since [[n!− 1]] contains infinitely many 0s
and infinitely many 1s, either c consists of 0s and d consists of 1s, or the other
way around. But then the resulting consecutive groups of 0s and 1s have sizes
|c|b!/h, |d|(b+ 1)!/h, |c|(b+ 2)!/h), |d|(b+ 3)!/h · · · , ultimately divisible by any
number, which does not hold for the group sizes n!− 1, (n+ 1)!− 1, (n+ 2)!− 1,
(n+ 3)!− 1 . . . in [[n!− 1]]. This contradiction proves [[n!]] 6≥p [[n!− 1]]. ut

Corollary 2. [[n!]] 6≥p [[(2n)!]].

Proof. As in the previous proof, use the form of the transducts of [[n!]] given by
Theorem 2: again c and d both consist of copies of a single symbol, different
for the two. But now it will be impossible for such transduct to equal [[(2n)!]]
because the growth of the groups in the transduct is like a multiple of n!, which
is much slower than that of the groups in [[(2n)!]]. ut

For the same class of functions we now give a characterization for transducts of
〈f〉 rather than [[f ]].



Theorem 3. Let f : N→ N be a function for which for every m > 0 there exists
N ∈ N such that f(n) ≡ 0 mod m for all n > N . If 〈f〉 ≥p σ then there exist
k > 0, a ≥ 0 and u, p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ = u

∞∏
j=0

(
k−1∏
i=0

pic
f(a+i+jk)/k
i

)
= up0c

f(a)/k
0 p1c

f(a+1)/k
1 · · · .

Proof. Assume that P (〈f〉) = σ for a permutation transducer P = (Q, q0, δ, λ).
Choose k by Lemma 1 such that δ(q, 0k) = δ(q, 1k) = q for all q ∈ Q. By
the assumption on f there exists a such that f(n) ≡ 0 mod k for all n ≥ a.
Let v = 10f(0)10f(1)1 · · · 10f(a−1), which is a prefix of 〈f〉. Let u = λ(q0, v),
and r0 = δ(q0, v). Define ri = δ(r0, 1

i) for i = 1, 2, . . . , k; since δ(r0, 1
k) = r0

we have rk = r0. Since f(a + i) ≡ 0 mod k we obtain ri+1 = δ(ri, 10f(a+i))
for i = 0, . . . , k − 1. Write pi = λ(ri, 1) and ci = λ(ri+1, 0

k), then by using
δ(ri+1, 0

k) = ri+1 for i = 0, . . . , k− 1, we obtain the desired result that σ equals

uλ(r0, 10f(a))λ(r1, 10f(a+1))λ(r2, 10f(a+2)) · · · = u

∞∏
j=0

(
k−1∏
i=0

pic
f(a+i+jk)/k
i

)
.

ut

Corollary 3. 〈n!〉 6≥p 〈n!− 1〉.

Proof. Suppose that 〈n!〉 ≥p 〈n!− 1〉. Then by Theorem 3 we obtain

〈n!− 1〉 = up0c
a!/k
0 p1c

(a+1)!/k
1 p2c

(a+2)!/k
2 · · · .

Since in 〈n!−1〉 only increasing groups of 0s occur between consecutive 1s, every
pi contains at most one 1 and every ci only consists of 0s. By possibly doubling
k, we may assume that two distinct pis contain a 1; let pg and ph be the first
two containing a 1. For i = 0, . . . , h − g − 1 define di by ci = 0di . Then for

every j ≥ 0 the string pgc
(a+g+jk)!/k
g pg+1c

(a+g+1+jk)!/k
g+1 · · · ph is a part of 〈n!−1〉

containing exactly two 1s, with exactly C +
∑h−g−1

i=0
(a+g+jk)!di

k separating 0s,
for some constant C ≥ 0. Choose N > 2C + 2. Then for j large enough all of
these groups of 0s have size C mod N , contradicting the fact that after a finite
part 〈n!− 1〉 only contains groups of 0s of size −1 mod N . ut

Next we switch to functions f , like polynomials, for which n 7→ (f(n) mod m) is
periodic for every m > 0. For transducts of 〈f〉 under permutation transducers
the following characterization was given in [2].

Theorem 4. Let f : N → N be a function for which n 7→ (f(n) mod m) is
periodic for every m > 0. Then 〈f〉 ≥p σ for σ : N→ Σ if and only if there exist
k, h > 0 and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ =

∞∏
j=0

(
k−1∏
i=0

pic
bf(i+jk)/hc
i

)
= p0c

bf(0)/hc
0 p1c

bf(1)/hc
1 · · · .



We give a similar description of transducts of [[f ]].

Theorem 5. Let f : N → N be a function for which n 7→ (f(n) mod m) is
periodic for every m > 0. If [[f ]] ≥p σ for σ : N → Σ then there exist k, h > 0
and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ =

∞∏
j=0

(
k−1∏
i=0

pi(cipi)
bf(i+jk)/hc

)
= p0(c0p0)bf(0)/hcp1(c1p1)bf(1)/hc · · · ,

with the additional constraint that pi = ε if f(i) ≡ 0 mod h, and ci is non-empty.

Proof. Let f be as in the statement, and suppose that [[f ]] ≥p σ, for some
σ ∈ Σω, given by a permutation transducer P = (Q, q0, δ, λ). Let m = #Q,
and let h be the positive integer N from Lemma 1, so δh(q, x) = q for every
q ∈ Q, x ∈ Σ+. We will make use of the assumption that [[f mod h]] is periodic,
as n 7→ (f(n) mod h) is; replacing u by uh if necessary, we may assume that
[[f mod h]] = λ(u)ω. By k we will denote the (minimal) period of f mod h;
however, if k is odd, we replace it by 2k, doubling h if necessary.

Starting at state q0, the transducer P on input [[f mod h]] will read f(0) mod
h 0’s and arrive at at a state we will call q1. Let h0 be the least positive integer for
which δ(q0, 0

h0) = q0; note that h0 is a divisor of h by construction. If we write
f(0) = x0+y0·h, with 0 ≤ x0 < h, then by assumption f(j·k) = x0+zjh for every
j ≥ 1. Define p0 = λ(q0, 0

x
0) and c0p0 = λ(q1, 0

h), where the state q1 = δ(q0, 0
x
0);

this can be done since h is a multiple of h0 and hence δ(q1, 0
h) = q1 and p0 is a

postfix of λ(q1, 0
h). Note that q1 = q0 if and only if x0 is a multiple of h0; this

holds in particular when x0 = 0, in which case p0 = ε.
We proceed by similarly defining p1 and c1: with f(1) = x1 +y1 ·h we obtain

q2 = δ(q1, 0
x
1) and put p1 = λ(q1, 0

x
1) and c1p1 = λ(q2, 0

h). This is repeated, to
obtain xi, qi+1, pi, ci for i = 0, 1, . . . , k − 1; by our choices, qk = δ(qk−1, 1

x
k−1) =

q0.
By periodicity of f mod h with period k, it is now easily seen that σ = P ([[f ]])

is of the desired form. ut

4 Basic Function Operations

In this section we investigate how 〈f(n)〉 relates to 〈f(n+k)〉, 〈f(n)+k〉, 〈kf(n)〉
and 〈f(kn)〉, and similarly for [[·]]. For completeness we do not only consider
∼p,≥p,≤p based on permutation transducers, but also∼,≥,≤ based on ordinary
transducers.

Theorem 6. When linear operations on sequences of the form 〈f〉 or [[f ]] are
performed, the general relation between the original sequence and its image by
ordinary or permutation is given by an entry in the following two tables:

〈f(n)〉 ≤, ≥, 6≤p, ≥p 〈f(n) + k〉
〈f(n)〉 ≤, ≥, 6≤p, ? 〈f(n+ k)〉
〈f(n)〉 ≤, ≥, ≤p, ≥p 〈kf(n)〉
〈f(n)〉 6≤, ≥, 6≤p, ≥p 〈f(kn)〉

[[f(n)]] ≤, ≥, 6≤p, 6≥p [[f(n) + k]]
[[f(n)]] ≤, ≥, 6≤p, 6≥p [[f(n+ k)]]
[[f(n)]] ≤, ≥, ≤p, ≥p [[kf(n)]]
[[f(n)]] 6≤, ≥, 6≤p, 6≥p [[f(kn)]]



An entry of the form σ ≥ τ indicates that for every f, k a transducer exists
transforming σ to τ , while σ 6≥ τ indicates that f, k exist for which such a
transducer does not exist, and similar for ≤,≤p,≥p. The question mark ’?’
states that this question is open for 〈f(n)〉 ≥p 〈f(n+ k)〉.

The correctness of these statements is given by the proofs of the following
four propositions.

Proposition 2. For every positive function f : N→ N:

• 〈f(n)〉 ∼ 〈f(n) + 1〉;
• 〈f(n)〉 ≥p 〈f(n) + 1〉 but 〈f(n)〉 ≤p 〈f(n) + 1〉 does not hold generally;
• [[f(n)]] ∼ [[f(n) + 1]];
• neither [[f(n)]] ≥p [[f(n) + 1]] nor [[f(n)]] ≤p [[f(n) + 1]] holds generally.

Proof. For any f the permutation transducer on the left

1|10
0|0

0|ε

0|0
1|1

0|0
1|1

0|ε

implies that 〈f(n)〉 ≥p 〈f(n) + 1〉, and hence ≥ too. Conversely, the (partial)
ordinary transducer on the right implies 〈f(n)+1〉 ≥ 〈f(n)〉 for every positive f .
Thus 〈f〉 ∼ 〈f+1〉 and since both [[f ]] ∼ 〈f〉 and [[f+1]] ∼ 〈f+1〉 by Proposition
1, we immediately get [[f ]] ∼ [[f + 1]].

In Corollary 3 we have seen that 〈f(n) + 1〉 ≥p 〈f(n)〉 does not hold for
f(n) = n!− 1.

Finally, neither [[f ]] ≥p [[f + 1]] nor [[f ]] ≤p [[f + 1]] hold in general, as we
will see later in Section 5 in Corollary 4 (for f(n) = n+ 1) and we have seen in
Corollary 1 (for f(n) = n!− 1).

Proposition 3. For every positive function f : N→ N:

• 〈f(n)〉 ∼ 〈f(n+ 1)〉;
• 〈f(n)〉 ≤p 〈f(n+ 1)〉 does not hold generally;
• [[f(n)]] ∼ [[f(n+ 1)]]; does not hold generally;
• neither [[f(n)]] ≥p [[f(n+ 1)]] nor [[f(n)]] ≤p [[f(n+ 1)]] holds generally.

Proof. The ordinary transducers

1|ε

0|ε

1|1

0|0
1|1

1|10f(0)1

0|0
1|1



prove the first claim.

As an example for which no permutation transducer maps 〈f(n + 1)〉 to
〈f(n)〉, take f(0) = 2 and f(n) = 1 for n ≥ 1; then 〈f(n + 1)〉 = (10)ω is
periodic, but 〈f(n)〉 = 102(10)ω is not; hence no permutation transducer will
transform 〈f(n+ 1)〉 to 〈f(n)〉. See also Corollary 6.

For the opposite case for permutation transducers, it is conjectured that
〈f(n)〉 ≥p 〈f(n+ 1)〉 does not generally hold, but the proof is missing as yet.

These transducers

1|0

0|ε 0|1
1|0

0|0f(0)1

0|1
1|0

map [[f(n)]] to [[f(n+ 1)]] and vice versa, for positive functions f .

The claim that no permutation transducer will map [[f(n)]] to [[f(n + 1)]] in
general, is proven in Corollary 4 (for f(n) = n+ 1).

In the opposite direction, there will be no permutation transducer in general
to map [[f(n+ 1)]] to [[f(n)]]; explicitly, again the function f defined by f(0) = 2
and f(n) = 1 for n ≥ 1 we see that [[f(n+ 1)]] = (10)ω is periodic but [[f(n)]] =
02(10)ω is not, hence not [[f(n+ 1) ≥p [[f(n)]].

Proposition 4. For every positive function f : N→ N and all k ≥ 1:

• 〈f(n)〉 ∼ 〈k · f(n)〉.
• 〈f(n)〉 ∼p 〈k · f(n)〉.
• [[f(n)]] ∼ [[k · f(n)]].

• [[f(n)]] ∼p [[k · f(n)]].

Proof. The permutation transducer on the left in the following picture shows
that 〈f(n)〉 ≥p 〈k ·f(n)〉 (and hence 〈f(n)〉 ≥ 〈k ·f(n)〉) for every positive f and
every k ≥ 1; notice that for k = 1 this is the identity transducer.

1|1
0|0k

0|0
1|1

0|ε

0|ε

0|ε

For the converse, we describe a partial permutation transducer (the picture
on the right shows the case k = 4): it consists of k states, connected by a directed
cycle of k arrows, all with rule 0 | ε except for (say) the first one, which has 0 | 0.
Moreover, on the initial state there is a directed loop with rule 1 | 1.

The one-state permutation transducer on the left establishes one direction of
the fourth (and hence third) claim.



1|1k
0|0k

0|0

0|ε

0|ε

0|ε
1|1

1|ε

1|ε 1|ε

For the direction [[k · f(n)]] ≥p [[f(n)]] (implying ≥ as well) we adapt the k-cycle
described above: this time to the initial node on the main cycle we attach a new
directed k-cycle, each arrow carrying the rule 1 | ε with a single exception again,
on the first arrow (say), which has 1 | 1 instead. This way k consecutive like
symbols are replaced by just one of them. The picture above shows on the right
the case k = 4.

Proposition 5. For every positive function f : N→ N and all k ≥ 1:

• 〈f(n)〉 ≥ 〈f(k · n)〉 but not conversely, generally;
• 〈f(n)〉 ≥p 〈f(k · n)〉 but not conversely, generally;
• [[f(n)]] ≥ [[f(k · n)]], but not conversely, generally;
• neither [[f(n)]] ≥p [[f(k · n)]] nor [[f(n)]] ≤p [[f(k · n)]] holds generally.

Proof. Again, we combine the cases 〈f(n)〉 ≥ 〈f(k · n)〉 and 〈f(n)〉 ≥p 〈f(k · n)〉
by describing a (partial) permutation transducer, mapping 〈f(n)〉 to 〈f(k · n)〉:
it will have k nodes connected by a directed cycle of arrows with rule 1 | ε on
them, except for the first arrow, which has 1 | 1. Moreover, in each node there
will be a directed loop with rule 0 | ε, except for the node following the initial
node on the cycle, where the rule on the loop will be 0 | 0. We depict the case
k = 4.

1|1

1|ε

1|ε

1|ε

0|0

0|ε
0|ε

0|ε

That 〈f(k ·n)〉 ≥p 〈f(n)〉 does not hold in general can be seen from taking as an
example the case k = 2 and f(n) = 1 if n 6= 1 and f(1) = 2: then 〈f(2n)〉 = (10)ω

is periodic, but 〈f(n)〉 = 10102(10)ω is not.
Here we describe the ordinary transducer that shows [[f(n)]] ≥ [[f(k ·n)]]. We

distinguish the cases k even and k odd.
If k is odd, the transducer will consist of a directed 2k-cycle with directed

loops attached to all 2k states; the arrows on the cycle will read alternately a
symbol 0 or a symbol 1. The arrow to the initial state has rule 0 | 0, and all
other arrows reading 0 have rule 0 | ε attached. The arrow diagonally opposite



to this arrow on the cycle carries rule 1 | 1 and all other arrows reading 1 have
rule 1 | ε. The loops read alternately symbols 0 and 1, starting with 0 at the
initial node, and all output ε, with exception of the loop on the initial node,
where 0 | 0 is used and the loop diagonally opposite, where where 1 | 1 applies.
We show the resulting transducer for k = 3:

0|0

1|ε

1|ε

0|0

0|ε
1|ε

1|1

0|ε

0|ε

1|1

1|ε
0|ε

If k is even there will be a main cycle of size k; but note that for a positive
function f the result [[f(n)]] will be periodic, namely 0ω or 1ω.

The result upon input f(n) will be that only the strings bf(kn) will be copied,
for n ≥ 0, all others ignored.

By Corollary 2 we have that [[n!]] 6≥p, [[(2n)!]], so not always [[f(n)]] ≥p [[f(2n)]].
Finally, in general not [[f(kn)]] ≥ [[f(n)]] (and thus certainly not ≥p); explic-

itly now, the function g defined by g(1) = 2 and g(n) = 1 for n 6= 1 is not
periodic while g(2n) is.

5 Classes of Linear Functions

For linear polynomial functions fk,l(n) = kn + l, the relations between 〈fk,l〉
were already dealt with in [2].

Theorem 7. For all k, l ∈ N with k ≥ 1: 〈kn + l〉 ∼p 〈n〉; in other words: all
(non-constant) linear functions are equivalent under ∼p.

The situation is markedly different for [[fk,l]], as we will see in the next theorem.
Note that by Proposition 1 and Theorem 1 we already know [[n]] <p 〈n〉, so 〈n〉
is not atomic. We do not yet know whether [[n]] is atomic or not.

Theorem 8. Under permutation transduction there is an infinite, strictly as-
cending sequence of equivalence classes containing [[f ]] for linear polynomials f ,
in between [[n]] and 〈n〉; in particular

[[n]] <p [[n+ 2]] <p [[n+ 4]] <p [[n+ 8]] <p · · · ≤p 〈n〉.



Before we give the proof, we state a corollary that settles a question from the
previous section.

Corollary 4. No permutation transducer P exists such that P ([[n+1]]) = [[n+2]].

Proof. This is the content of the first strict inequality in Theorem 8, in combi-
nation with [[n]] ∼p [[n + 1]]. The latter follows from [[n+ 1]] = [[n]], in which σ
denotes the complement of σ, obtained by permuting the two symbols 0, 1; it
will be clear that σ can be obtained from σ by a one-state permutation trans-
ducer. ut

1|ε

1|ε

0|ε

0|00|ε

0|1

The proof of Theorem 8 is given
in two parts. The first (existence)
part is immediate from the follow-
ing lemma.

Lemma 2. Let k ≥ 0 be an integer; then [[n+ k]] ≥p [[n+ bk+1
2 c]].

Proof. For k = 0, 1 the statement is trivial; so assume that k ≥ 2. Consider the
four-state permutation transducer given above. For even k it will remove any
1’s from the input sequence [[n+ k]] and alternatingly divide by 2 or divide by 2

and complement, any sequence of 0’s; the result is [[n+ k
2 ]]. For odd k it converts

[[n+ k]] into [[n+ k+1
2 ]]. Taking complements is easily achieved by a permutation

transducer, and the permutation property is transitive. ut

In fact this lemma yields a stronger result than required for Theorem 8, as stated
in the following corollary.

Corollary 5. For every a > 0 we have [[n+ a]] ≥p [[n]].

Proof. Starting by [[n + a]] repeat applying Lemma 2 until [[n + 1]] is obtained.
Then the corollary follows from transitivity of ≥p and [[n+ 1]] ∼p [[n]]. ut

To complete the proof of Theorem 8 we have to prove that for none of the strict
steps a backward transduction is possible. This is immediate from the following
stronger result.

Proposition 6. For a ≥ 0, b ≥ a + 2 no permutation transducer P exists
satisfying P ([[n+ a]]) = [[n+ b]].

Proof. The permutation transducts of [[n + a]], according to Theorem 5, are of
the form

∞∏
j=0

(
k−1∏
i=0

pi(cipi)
b i+jk+a

h c

)
.

Replace the period k by a multiple (if necessary) in order for h to be a divisor
of k, and write m = k

h and ai = b i+a
k c for i = 0, . . . , k − 1. Write bi = b i+a

h c −
aim for i = 0, . . . , k − 1, note that 0 ≤ bi < m. Then the transduct is of

the shape
∏∞

j=0

(∏k−1
i=0 pi(cipi)

bi+(j+ai)m
)
. Writing wi = (cipi)

m and replacing



pi by pi(cipi)
bi , we conclude that the transduct is of the shape P ([[n + a]]) =∏

j

∏k−1
i=0 pi(wi)

j+ai .
Now suppose that this image equals [[n+ b]], for some b ≥ a+ 2. It is impos-

sible for wi to contain both 0 and 1, since in that case
∏

j

∏
i piw

j+ai

i contains
infinitely many pairs of the same symbol separated by a fixed number of copies
of the other symbol, which [[n+ b]] = 0b1b+10b+21b+3 · · · clearly does not.

Hence each wi consist of copies of a single symbol; if wi+1 consists of the same
symbol or equals ε, we can merge piwipi+1wi+1 and reduce k. Hence without
loss of generality we may assume that wi and wi+1 consist of different symbols;
the same then holds for pi and pi+1 (but they could equal ε). By multiplying the
period k we may assume that k is even and k > b.

The linear growth of [[n + b]] implies that each wi will consist of exactly k
symbols; since piwi and pi+1wi+1 are consecutive blocks of different symbols,
#pi+1 mod k = (#pi + 1) mod k.

Since k > b > a and ai = b i+a
k c we obtain ai = 0 for i < k − a. So

p0p1 · · · pk−a−1 is an initial part of [[n + b]], in which pi alternatingly consist of
0s and 1s. If p0 = ε then p1 is the first group of 0s, being 0b, contradicting
#pi+1 mod k = (#pi + 1) mod k. Hence p0 = 0b, and by #pi+1 mod k = (#pi +
1) mod k we obtain #pi = b+ i for i = 0, 1, . . . , k− a− 1. But since #(cipi) = k
we obtain #pi ≤ k. But then we have b+k−a−1 = #pk−a−1 ≤ k, contradicting
b ≥ a+ 2. ut

6 Higher Degree Polynomials

Theorem 9. Let f, g : N→ N be two polynomials of degree n > 1 with the same
leading coefficient such that

• f − g is not constant, and
• limx→∞(f(ax)− ang(x)) =∞ for every a > 1.

Then no permutation transducer P exists such that P (〈f〉) = 〈g〉.

Proof. Assume that such a P exists. Then according to Theorem 4 there exist
k, h > 0 and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

〈g〉 =

∞∏
j=0

(
k−1∏
i=0

pic
b f(i+jk)

h c
i

)
.

Since limn→∞ g(n) =∞, for every i = 0, . . . , k−1 no 1 occurs in ci, and at most
one 1 occurs in pi. Since 〈g〉 contains symbols 1, at least one of the pi’s contains
a symbol 1.

If there is only one such pi, by doubling k we make it two.
Let pa and pb be the first two pi’s containing a 1. Let q be the total number

of 1’s in p0, . . . , pk−1, and ci = 0ai for i = 0, . . . , k−1. Now we count the number
of 0’s right after the qj + 1-th 1 of 〈f〉 in two ways, and obtain that there is



constant c ≥ 0 (corresponding to the number of 0’s occurring in some pi’s) such
that

c+

b−1∑
i=a

bf(i+ jk)

h
cai = g(jq)

for all j ≥ 0.
First we consider the case k = q. Then a = 0, b = 1 and we have c +

a0b f(jk)h c = g(jk) for all j ≥ 0. This is only possible if f − g is constant, which
we assumed to be not. In the remaining case we have 0 < q < k.

Write A =
∑b−1

i=a ai.
Using that f is ascending for sufficiently large arguments, we have f(jk) ≤

f(i+ jk) ≤ f((j + 1)k) for j > C for some C, and a ≤ i < b.
Using this and x− 1 ≤ bxc ≤ x for all x, we obtain

c+A(
f(jk)

h
− 1) ≤ g(jq) ≤ c+A

f((j + 1)k)

h

for all j ≥ C. Then for j → ∞ in the above inequalities we obtain Akn = hqn.
Then the left inequality yields

c−A+ (
q

k
)nf(jk) = c+A(

f(jk)

h
− 1) ≤ g(jq)

for all j ≥ C. This contradicts limx→∞(f(ax)− ang(x)) =∞ for a = k
q > 1. ut

Corollary 6. 〈(n+ 1)2〉 6≥p 〈n2〉 and 〈n2〉 6≥p 〈(n− 1)2〉.

Lemma 3. For k > 0 there is no permutation transducer P such that P :
〈(n− k)2〉 7→ 〈(n− 2k)2〉.

Proof. Apply Theorem 9 directly to f = (n− k)2 and g = (n− 2k)2. ut

Corollary 7. The following provides an infinite ascending chain of quadratic
polynomial functions that are non-equivalent under permutation transducers:

〈(n+1)2〉 <p 〈n2〉 <p 〈(n−1)2〉 <p 〈(n−2)2〉 <p 〈(n−4)2〉 <p 〈(n−8)2〉 <p · · · .

Proof. Consider the three permutation transducers

04|ε

1|ε

1|1

04|0 04|ε

1|ε

1|1

04|0 04|ε

1|1

1|ε

04|0

based on the principle that the left cycle reduces 104m1 to 10m and the right
cycle 104m+11 to 1. Here 04|u means that all four arrows consume 0, while only
one has output u, the others have empty output. It is not hard to see that the
first transduces 〈(n− 2k)2〉 to 〈(n− k)2〉 for every k > 0, the second transduces
〈(n−1)2〉 7→ 〈n2〉 and the third transduces 〈n2〉 to 〈(n+1)2〉. None of the arrows
is reversible by Corollary 6 and Lemma 3. ut



Remark 1. Now consider the permutation transducers:

1|1
0|ε

1|ε04|0 1|1
0|ε

1|ε04|0

The one on the left (or the first of the three transducers in the previous picture)
is easily seen to provide transition from 〈(n+ 2k)2〉 to 〈(n+ k)2〉, for k > 0, so

〈(n+ 1)2〉 ≤p 〈(n+ 2)2〉 ≤p 〈(n+ 4)2〉 ≤p 〈(n+ 8)2〉 ≤p · · · ;

but here transductions in the opposite direction are not ruled out by Theorem
9. The other transducer shows that 〈(n+ 2k− 1)2〉 ≥p 〈(n+ k)2〉 for k > 0, and
puts 〈(n+ 2k − 1)2〉 in some infinite non-descending sequence. For example:

〈(n+ 1)2〉 ≤p 〈(n+ 2)2〉 ≤p 〈(n+ 3)2〉 ≤p 〈(n+ 5)2〉 ≤p 〈(n+ 9)2〉 · · · .
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