15 research outputs found

    Reciprocal Modulation of Cognitive and Emotional Aspects in Pianistic Performances

    Get PDF
    Background: High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings: Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) - loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions: Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances.Brazilian government research agency: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[08/54844-7]Brazilian government research agency: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/59826-4

    A computational fluid dynamics study of hydrogen bubbles in an electrochemical reactor

    No full text
    Most electrochemical reactors present reactions with the growth and departure of gas bubbles which influence on the reactor hydrodynamics and this study is usually complex, representing a vast field for research. The present paper had as objective to study a bi-phase (gas-liquid) system aiming to foresee the influence of departure of hydrogen bubbles generated on effective electrode surface situated on cathodic semi-cell. Nevertheless, it was idealized that the gas was injected into the semi cell, through the effective electrode surface With this hypothesis, it was possible to study, and numerically analyze, the hydrodynamic behavior of the hydrogen bubbles in the interior of the study domain, applying concepts of computational fluid dynamics by using the computational applicative CFX-4 for the application of the MUSIG ("MUltiple-SIze-Group") model, taking into consideration the phenomena of coalescence and the distribution of the diameter of the bubbles.<br>A maioria dos reatores eletroquímicos apresenta reações com crescimento e desprendimento de bolhas de gás influenciando na hidrodinâmica dos reatores e seu estudo é, geralmente, complexo representando um campo amplo para pesquisas. O presente artigo teve por objetivo estudar um sistema bifásico (gás-líquido) visando prever a influência do desprendimento das bolhas de hidrogênio geradas na superfície específica do eletrodo localizada na semicélula catódica. No entanto, foi idealizado que o gás fora injetado no interior da semicélula através da superfície específica do eletrodo. Com esta hipótese, foi possível estudar e analisar numericamente o comportamento hidrodinâmico das bolhas de hidrogênio no interior do domínio de estudo, aplicando-se os conceitos de fluidodinâmica computacional usando o aplicativo computacional CFX-4 para aplicação do modelo MUSIG ("Multiple-size-group") levando em consideração os fenômenos da coalescência e da distribuição do diâmetro das bolhas

    Gold nanoparticle aerosols for rodent inhalation and translocation studies

    No full text
    The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilisation. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology and specific surface area, and on interaction with lung tissues and lung cells after one hour inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600°C. Since there are currently no data available on inhaled Au-NP in the 10-50 nm diameter range the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radio-labeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1-2×107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration.JRC.I.4-Nanobioscience
    corecore