135 research outputs found

    Effects of the geometrical configuration of air-water mixer on the size and distribution of micro-bubbles in aeration systems

    Get PDF
    The objective of this work is to present a novel geometrical configuration for microbubble generators (MBGs) to improve dissolved-oxygen levels in water. Among various methodologies from the literature, Orifice and Venturi tubes have been considered as baseline cases. Experimental data from the literature are used to verify a computational fluid dynamics (CFD) case developed for a better understanding of the dynamics of MBGs. As a result, the validated CFD setup has been implemented on a modified Venturi-type generator, where air is injected coaxially with respect to the tube axis, whereas a helicoid wall at variable pitch angle is used. Results show a reduction in the mean bubble diameter distribution from the baseline Venturi tubes, particularly, at low-speed inlet velocities. This is of interest, especially to decrease the energy requirement for most common water aeration systems

    Limitations of conventional drinking water technologies in pollutant removal

    Get PDF
    This chapter gives an overview of the more traditional drinking water treatment from ground and surface waters. Water is treated to meet the objectives of drinking water quality and standards. Water treatment and water quality are therefore closely connected. The objectives for water treatment are to prevent acute diseases by exposure to pathogens, to prevent long-term adverse health effects by exposure to chemicals and micropollutants, and finally to create a drinking water that is palatable and is conditioned in such a way that transport from the treatment works to the customer will not lead to quality deterioration. Traditional treatment technologies as described in this chapter are mainly designed to remove macro parameters such as suspended solids, natural organic matter, dissolved iron and manganese, etc. The technologies have however only limited performance for removal of micropollutants. Advancing analytical technologies and increased and changing use of compounds however show strong evidence of new and emerging threats to drinking water quality. Therefore, more advanced treatment technologies are required.</p
    corecore