62 research outputs found

    Theory of concentration depolarization in the presence of orientational correlations

    Get PDF
    A theory is presented that incorporates the effect of orientational correlations between luminescent molecules on the fluorescence depolarization due to incoherent energy transfer. The luminescent molecules are embedded in a homogeneous two- or three-dimensional medium which is in an axially symmetric phase with the xy plane as a symmetry plane, and consists of axially symmetric molecules. For the general orientational singlet distribution and the general form of orientational correlations consistent with these symmetries, we derive analytical expressions for the anisotropy of fluorescence emission. In a no back transfer model, numerical results are evaluated for a simple choice of correlations that tend to align nearby molecules. In a pure donor system, the anisotropy of fluorescence is found to be strongly dependent on these correlations. By ignoring them, the critical transfer distance, as obtained from depolarization experiments, may be drastically underestimated. In a system where donors are surrounded by a huge majority of traps, the critical transfer distance can be determined from the intensity of trap fluorescence. Its anisotropy also strongly depends on correlations and may thus give an indication of the correlation length scale

    Current-induced vortex dynamics in Josephson-junction arrays: Imaging experiments and model simulations

    Get PDF
    We study the dynamics of current-biased Josephson-junction arrays with a magnetic penetration depth smaller than the lattice spacing. We compare the dynamics imaged by low-temperature scanning electron microscopy to the vortex dynamics obtained from model calculations based on the resistively-shunted junction model, in combination with Maxwell's equations. We find three bias current regions with fundamentally different array dynamics. The first region is the subcritical region, i.e. below the array critical current I_c. The second, for currents I above I_c, is a "vortex region", in which the response is determined by the vortex degrees of freedom. In this region, the dynamics is characterized by spatial domains where vortices and antivortices move across the array in opposite directions in adjacent rows and by transverse voltage fluctuations. In the third, for still higher currents, the dynamics is dominated by coherent-phase motion, and the current-voltage characteristics are linear.Comment: 10 pages, with eps figures. To appear in Phys. Rev.

    Anisotropy in the helicity modulus of a 3D XY-model: application to YBCO

    Full text link
    We present a Monte Carlo study of the helicity moduli of an anisotropic classical three-dimensional (3D) XY-model of YBCO in superconducting state. It is found that both the ab-plane and the c-axis helicity moduli, which are proportional to the inverse square of the corresponding magnetic field penetration depth, vary linearly with temperature at low temperatures. The result for the c-axis helicity modulus is in disagreement with the experiments on high quality samples of YBCO. Thus we conclude that purely classical phase fluctuations of the superconducting order parameter cannot account for the observed c-axis electrodynamics of YBCO.Comment: 7 pages, 1 figur

    Finite-Size Scaling in Two-Dimensional Superfluids

    Full text link
    Using the xyx-y model and a non-local updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two dimensional superfluid on large-size square lattices L×LL \times L up to 400×400400\times 400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of LL values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson Renormalization Group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments.Comment: 13 pages, postscript fil

    Single-vortex-induced voltage steps in Josephson-junction arrays

    Full text link
    We have numerically and analytically studied ac+dc driven Josephson-junction arrays with a single vortex or with a single vortex-antivortex pair present. We find single-vortex steps in the voltage versus current characteristics (I-V) of the array. They correspond microscopically to a single vortex phase-locked to move a fixed number of plaquettes per period of the ac driving current. In underdamped arrays we find vortex motion period doubling on the steps. We observe subharmonic steps in both underdamped and overdamped arrays. We successfully compare these results with a phenomenological model of vortex motion with a nonlinear viscosity. The I-V of an array with a vortex-antivortex pair displays fractional voltage steps. A possible connection of these results to present day experiments is also discussed.Comment: 10 pages double sided with figures included in the text. To appear in Journal of Physics, Condensed Matte

    Phase Transitions Driven by Vortices in 2D Superfluids and Superconductors: From Kosterlitz-Thouless to 1st Order

    Full text link
    The Landau-Ginzburg-Wilson hamiltonian is studied for different values of the parameter λ\lambda which multiplies the quartic term (it turns out that this is equivalent to consider different values of the coherence length ξ\xi in units of the lattice spacing aa). It is observed that amplitude fluctuations can change dramatically the nature of the phase transition: for small values of λ\lambda (ξ/a>0.7\xi/a > 0.7), instead of the smooth Kosterlitz-Thouless transition there is a {\em first order} transition with a discontinuous jump in the vortex density vv and a larger non-universal drop in the helicity modulus. In particular, for λ\lambda sufficiently small (ξ/a1\xi/a \cong 1), the density of bound pairs of vortex-antivortex below TcT_c is so low that, vv drops to zero almost for all temperature T<TcT<Tc.Comment: 8 pages, 5 .eps figure

    Temperature Derivative of the Superfluid Density in the Attractive Hubbard model

    Full text link
    Based on extensions of the grand-canonical Quantum Monte-Carlo algorithm to incorporate magnetic fields, we provide numerical data confirming the existence of a Kosterlitz-Thouless transition in the attractive Hubbard model. Here, we calculate the temperature derivative of the superfluid density, to pin down the transition. Away from half-band filling, the above quantity, shows a response which increases with lattice size at the transition temperature. In contrast, such a signal is not observed for the case of a half-band filling.Comment: Latex 8 pages, 3 figures (in postscript format) appendded at the end of the fil

    Nonlinear Viscous Vortex Motion in Two-Dimensional Josephson-Junction Arrays

    Get PDF
    When a vortex in a two-dimensional Josephson junction array is driven by a constant external current it may move as a particle in a viscous medium. Here we study the nature of this viscous motion. We model the junctions in a square array as resistively and capacitively shunted Josephson junctions and carry out numerical calculations of the current-voltage characteristics. We find that the current-voltage characteristics in the damped regime are well described by a model with a {\bf nonlinear} viscous force of the form FD=η(y˙)y˙=A1+By˙y˙F_D=\eta(\dot y)\dot y={{A}\over {1+B\dot y}}\dot y, where y˙\dot y is the vortex velocity, η(y˙)\eta(\dot y) is the velocity dependent viscosity and AA and BB are constants for a fixed value of the Stewart-McCumber parameter. This result is found to apply also for triangular lattices in the overdamped regime. Further qualitative understanding of the nature of the nonlinear friction on the vortex motion is obtained from a graphic analysis of the microscopic vortex dynamics in the array. The consequences of having this type of nonlinear friction law are discussed and compared to previous theoretical and experimental studies.Comment: 14 pages RevTex, 9 Postscript figure

    Two-dimensional Superfluidity and Localization in the Hard-Core Boson Model: a Quantum Monte Carlo Study

    Full text link
    Quantum Monte Carlo simulations are used to investigate the two-dimensional superfluid properties of the hard-core boson model, which show a strong dependence on particle density and disorder. We obtain further evidence that a half-filled clean system becomes superfluid via a finite temperature Kosterlitz-Thouless transition. The relationship between low temperature superfluid density and particle density is symmetric and appears parabolic about the half filling point. Disorder appears to break the superfluid phase up into two distinct localized states, depending on the particle density. We find that these results strongly correlate with the results of several experiments on high-TcT_c superconductors.Comment: 10 pages, 3 figures upon request, RevTeX version 3, (accepted for Phys. Rev. B
    corecore