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Theory of concentration depolarization in the presence of orientational

correlations

J. Knoester and J. E. Van Himbergen
Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands

(Received 2 July 1985; accepted 1 October 1985)

A theory is presented that incorporates the effect of orientational correlations between
luminescent molecules on the fluorescence depolarization due to incoherent energy transfer. The
luminescent molecules are embedded in a homogeneous two- or three-dimensional medium
which is in an axially symmetric phase with the xy plane as a symmetry plane, and consists of
axially symmetric molecules. For the general orientational singlet distribution and the general
form of orientational correlations consistent with these symmetries, we derive analytical
expressions for the anisotropy of fluorescence emission. In a no back transfer model, numerical
results are evaluated for a simple choice of correlations that tend to align nearby molecules. In a
pure donor system, the anisotropy of fluorescence is found to be strongly dependent on these
correlations. By ignoring them, the critical transfer distance, as obtained from depolarization
experiments, may be drastically underestimated. In a system where donors are surrounded by a
huge majority of traps, the critical transfer distance can be determined from the intensity of trap
fluorescence. Its anisotropy also strongly depends on correlations and may thus give an indication

of the correlation length scale.

I. INTRODUCTION

Fluorescence depolarization due to incoherent energy
transfer between luminescent molecules embedded in a host
medium (concentration depolarization) has been the sub-
ject of many experimental'™ and theoretical®>™'! investiga-
tions. To our knowledge, all theoretical studies so far are
limited to systems in which both positions and orientations
of the luminescent molecules are uncorrelated. Here we
present a theory in which their orientations are correlated
such that nearby molecules tend to align, while their posi-
tions remain distributed homogeneously and without corre-
lations. These correlations are assumed to be imposed by
(local) order in the host medium.

In a typical experimental configuration,'’ also consid-
ered throughout this work, molecules are excited by a laser
beam incident along the y axis of the lab frame and polarized
parallel to the z axis. One obtains information on the transfer
process from the fluorescence emission anisotropy

A= (I, — L)/, +21I,), (1.1)

observed in the x direction with intensities of components
parallel (I} ) and perpendicular (, ) to the initial polarization.
In the absence of any correlations, and for isotropic transfer
rates, the time dependence of the anisotropy, after flash exci-
tation at t = 0, is given by

A(t)/4(0)= (p,(t)). (1.2)

12-17

Here (p,(t)) is the configurational average of the prob-
ability that an initially excited molecule will also be excited
at time ¢. The steady state analog of Eq. (1.2) has served as a
basis for many previous studies.®®

In this work, an expression for 4 (¢ ) is found for lumines-
cent molecules that are embedded in a homogeneous two- or
three-dimensional medium, which is in an axially symmetric
phase with the xy plane as a symmetry plane, and which
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consists of axially symmetric molecules {e.g., a model mem-
brane). Here, by two-dimensionality we mean that the
centers of mass of the luminescent molecules are confined to
a plane, whereas the molecules themselves need not be ori-
ented within this plane. This may for instance describe a
situation in which the molecules are embedded in many, rel-
atively thin, parallel layers that are so far apart, that energy
transfer only occurs within them. Instead of an isotropic
probability density for the orientations of individual mole-
cules, and thus of their emission dipoles, as is always consid-
ered, we assume that the only restrictions on the orienta-
tional singlet distribution, f({}), are imposed by the
symmetries mentioned above. This guarantees a general axi-
symmetric distribution’®:

f@)= 3 fiP.lcosB);
L even (13}

2L+ 15
= ’ Q= sHy ']
S a2 1L (@ B,7)

where P, are Legendre polynomials and P, are the order
parameters of the phase. The usual Euler angles a, 5, and y
fix the orientation of the molecule in the laboratory, by de-
scribing the rotation from the lab frame to the molecular
frame, the z axis of the latter being identified with the molec-
ular axis (see Fig. 1). The important new element in our the-
ory is that we admit correlations between the orientations of
the luminescent molecules, which will also be heavily re-
stricted by the symmetries of the system. Finally we assume
an isotropic multipole-multipole transfer rate

w;; = wlr;;) = (1/7)R /r,;)" (1.4)
between molecules / andj at distancer, ; = |r, —r;|. Risthe
critical transfer distance, and 7 the total lifetime of the excit-

ed state.
This paper is organized as follows. Section II contains a
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FIG. 1. Cross section of a typical system studied here, with nonisotropic
orientational distribution (left). Characterization of the orientation € of an
arbitrary molecule by the Euler angles @, 8, and ¥, which define the rotation
from the lab frame (x,y,z) to the molecular frame (x',y",2') (right).

formulation of the problem, with a derivation of the general
form, in which orientational correlations enter the theoreti-
cal analysis of the anisotropy (1.1). In Sec. I1I, theoretical
expressions are obtained for the anisotropy in a system both
with and without orientational correlations between mole-
cules, and with the symmetries mentioned above. In Sec. IV,
the anisotropy is analyzed for specific models of energy
transfer. For a special choice of orientational correlations in
these models, explicit numerical calculations are performed
in Sec. V, which clearly demonstrate the effect of their inclu-
sion upon the anisotropy. Complementary results have al-
ready been briefly reported elsewhere.'® Section V also con-
tains some concluding remarks. Some extensions of results
obtained in Sec. II are given in the Appendix.

1I. FORMULATION OF THE PROBLEM

In order to describe the transfer process, we will make
the common assumption, that the initial excitation degree in
the system is very low. As a result, one usually considers
many large, isolated clusters of luminescent molecules, each
existing of one initially excited molecule surrounded by dif-
ferent configurations of neighboring molecules. The process
of energy transfer in one cluster is described by the coupled
rate equations (CRE’s) for the probability p;(¢) of finding
molecule i ({ = 1,2,...,N }in the cluster to be excited at time ¢:

dp; (1)
dt _I;wupt(t)'i'zwujpj(t):

subject to the initial condition p; (0) = §,, . In practice, any
observed fluorescence quantity will then be an average, de-
noted by ((---) ), over all possible configurations of the mole-
cules in such a cluster, and one may write the anisotropy of
fluorescence emission in terms of the probabilities p, (¢) as

A1) =(Zpi(t)gl(ni)>/(2pi(t)g2(()'1))9 (2.2)

where

2.1)

8:(Q;) =cos? B, —sin? B, sin® a;;

8:(92;) = cos? B, + 2 sin? B, sin? a,. (2.3)
The orientation factors (2.3) follow from standard results
for the emission probability of an excited molecule and from

the fact, that the transition dipole must be parallel to the
molecular axis in view of the axial symmetry.

IfP® (X,;X,,....X, ) denotes the k-particle distribution
(normalized to unity) for the positions and orientations
X,={r,, Q,}) of the molecules 1,2,....k (1<k<N) in con-
figurations with one excited molecule (i = 1) at ¢t = 0, then

((+)) =fdx,dxz---dx,,ﬁ D (X, Xy Xn) (o).
(2.4)

Let the usual k-particle distribution in the medium, without
the condition that molecule 1 is excited at ¢ = 0, be denoted
P® (X,X,,...X;) (also normalized to unity). Then

P® (XX, Xy) = POX )PP (X,,... Xy ) /PP (X)),
(2.5)

This relation holds because P (X,,...Xy)/PY(X,)
equals the conditional distribution for the molecules
2,3,...,N, given that molecule 1 is at X,. Multiplication by
PW(X,), the one-particle distribution for the initially excited
molecules, then clearly gives the distribution for configura-
tions with one excitation at / = 1 for # = 0. This then deter-
mines P in terms of P and the one-particle distribu-
tions PV and P, which are not identical because of the
influence of the orientation on the absorption probability
(< cos® B,). For the spatially uniform system with the sym-
metries mentioned in Sec. I, it follows that

- POX) = (/N F(Qy), (2.6)
where f is given by Eq. (1.3), and, for uniform excitation of
the sample,

3

P(l) X —
( ) VLgen 2P2 1

=(I/N F(Q), 2.7
where V'is the volume of the sample (or the area in the two-
dimensional case). Furthermore, since we assume that the
positions of the molecules are distributed in an uncorrelated
manner,

f PHO(X,,... X, )dQ, = -;;P"‘- Xy X ), (2.8)

Py (cos B,)cos’ B,

for 1<k<N. As a result, the configurational average in Eq.
(2.2) is not nearly as complex as Eq. (2.4) suggests. Using Eq.
(2.8) repeatedly, together with Eqs. (2.5}42.7), one may de-
rive that

PN Y . __ 1 Fi) po
J B Koyt =< TOA povr, )
(2.9)
and
fF‘"’(Xl;xz,...,XN)dnz...an - %]m,). (2.10)

In Sec. III it will turn out, that either of these reductions
always occurs, and therefore, our description only involves
the one-particle distributions (2.6) and (2.7), and the two-
particle distribution

PO X6 P X) = 56 (10,05, (211
where G® depends on r, and r, only throughr,,=r, —r,

because the system is homogeneous. The absence of spatial
correlations further leads to the condition [Eq. (2.8)]

J. Chem. Phys., Vol. 84, No. 6, 15 March 1986
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fG(rlz,Ql,Q2)dQ2= f(Ql) (2.12)

We will now derive the most general form for the pair
correlation G(r,,,Q,,{1,) that is appropriate for our system.
For simplicity, and to be able to treat the two- and three-
dimensional case simultaneously, we will assume that G is
independent of the direction of r,,. Then, the most general
unrestricted form for G can be written as

G (r12,02,,0,) = ZG LM )D fn’ln. (2,)D fnzzn, (€2,),
(2.13)

where the summation runs over all indices that occur twice,
and DL (Q) represent the Wigner rotation matrices.”
Expression (2.13) can be reduced considerably to obtain the
most general form for G that is consistent with (i) intrinsic
properties of G, (ii) the symmetry properties of the mole-
cules and the phase, and (iii) the condition (2.12). The in-
trinsic properties are (a) symmetry with respect to permuta-
tion of the molecules 1 and 2; (b) reduction to the
“one-particle distribution after integration over X,

J-G(rIZ’Q'l’QZ)dQZdrIZ =Vf(Q),

note that Eq. (2.12) is a stronger requirement; (c) normali-
zation

f G(rlz,nl,nz)dﬂldﬂzdrlz = V;

and (d) behavior at infinity
G(r,0,Q,) = f(Q,) f(Q;) for ri; > .

The symmetry properties contained in (ii) have already been
mentioned in Sec. I. Reduction of Eq. (2.13) resulting from
the various symmetries can be achieved by a projection
method,?' outlined and applied previously in a very similar
situation.'® We will therefore not present the explicit calcu-
lations. Moreover, since the integration properties and the
asymptotic behavior of G can be worked out in a straightfor-
ward manner, we just state the final form of G:

G (r15,02,Q,) = ZG i, (r2)D i‘,O(QI)D ke myo({a)s (2.14)
with
G7y (r) =0 unless L, + L, = even, (2.15a)
Gy (r) =G M), (2.15b)

G9,(r) is independent of r [from Eq. (2.12)],

(2.15¢)
o 1, 2Ltlp ( 0 =__1_)
v =gt =@yt O T @A)
(2.15d)
‘i,L,(r)—»(Svrz)zG%,oG‘zp] as r (2.150)
—> o0 . .
G7y, (1N—0 (m#0)

By comparing Eqs. (2.13) and (2.14), one observes that all
unnecessary indices have been omitted in the notation of the
expansion coefficients in Eq. (2.14). Finally, it should be
noted, that, for our theory, it is not necessary to take G inde-
pendent of the direction of r,,. The extensions of Eqgs.

J. Knoester and J. E. Van Himbergen: Concentration depolarization

(2.13)-(2.15) to the more general case in two and three
dimensions are given in the Appendix.

lll. ANALYTICAL EVALUATION OF THE ANISOTROPY

We now evaluate the anisotropy of fluorescence emis-
sion (1.1) for the experimental configuration described in
Sec. L. If the population of excited molecules has an axisym-
metric orientational singlet distribution, one can easily
show?? that 4 is additive in the sense that

A= Zf;xAn’

where n enumerates disjoint axisymmetric subsets of excited
molecules and £, is the fraction that the nth subset contrib-
utes to the total intensity, and A4,, is the anisotropy of the
emission of the nth subset alone. This additivity is based on
the fact, that 7| + 21, = CI, for a set of molecules with
any axisymmetric singlet distribution, where C'is a constant
independent of further details of the distribution. The prop-
erty (3.1) is especially useful for uncorrelated molecules.

(3.1)

A. Uncorrelated case

For completely uncorrelated luminescent molecules the
two-particle distribution (2.11) is given by

G(r12ynlyn2) = f(nl)f(02), (3-2)

where f({}) is the axially symmetric singlet distribution
(1.3). The set of initially excited molecules has an axisymmet-
ric singlet distribution [ f of Eq. (2.7)] at t = 0, and since we
consider an isotropic transfer rate [Eq. (1.4)], the distribution
of initially excited molecules that are still excited at time ¢
has the same symmetry and even exactly the same form f
for all times. For the same reason, the excited molecules that
were not excited at ¢ = 0 have the axially symmetric distribu-
tion f for all times. Therefore, the additivity (3.1) is easily
applied by distinguishing two subsets of excited molecules at
time ¢: those that were excited initially (1), and those that
were not (2). Thus

A(t)= filt)d,(e) + [1 = filt)]4aft), (3.3)
where, in fact, both 4,(¢ ) and 4,(¢ ) do not depend on time in
view of the time independence of the orientational distribu-
tions. As is easily seen [cf. Eq. (2.2}], these subset anisotro-
pies equal the quotient of the orientation factors g, and g,,
after averaging them over the distribution f (for 4,) and f
(for A4,), respectively. One then obtains

_ 36P,+55P, + 14
352P, + 1)

(3.4)

1

and

A, =P, (3.5)
These expressions generalize the well-known results
A, = 0.4 and 4, = O for an isotropic distribution to an arbi-
trary axially symmetric distribution. Finally, f(¢)is deter-
mined by the solution to the CRE’s (2.1). It is easy to see that
fi(t) = {p,{¢)), theconfigurational average of the probability
that an initially excited molecule is also excited at time £. We
therefore arrive at

A(t) = (4, — P){pit)) + Py, (3.6)

J. Chem. Phys., Vol. 84, No. 6, 15 March 1986
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which indeed reduces to the result (1.2) for an isotropic dis-
tribution.

We may also consider the surrounding molecules
(2,..,N) as traps [w;; =0, and w,; = 0(j, j#1)], with flu-
orescence at another frequency than the donors (initially
excited molecules i = 1). In that case, one can measure both
the anisotropy and intensity of trap fluorescence. For uncor-
related molecules these quantities are evidently given by

Atrap = }_’2 (3'7)

and

Itrap = (1 _pl(t))e_—‘/r’ (38)
where the solution p, of the CRE’s is now different from that
occuring in Eq. (3.6), since many transfer rates are zero.

B. Anisotropy in the presence of orientational
correlations

In this case, the property (3.1) still applies, but is less
useful, because the anisotropy of the second subset (mole-
cules that were not excited at ¢ = 0) will depend on time ina
nontrivial way, since the transfer rate depends on distance,
and the distance to the initially excited molecule determines
the orientational distribution of the surrounding molecules.
Therefore, we prefer to evaluate 4 directly from Eq. (2.2).
We will, again, derive results for two cases: in the first all
molecules can transfer energy (pure donor system), in the
second the initially excited molecules are surrounded by a
huge majority of perfect traps, to which direct energy trans-
fer occurs.

Since the molecules 2,3,...,N are identical we have in Eq.
(2.2),

(z_pi(t )gvm.-)> = i) AQ) + (N — 1)(pfr 8., (22))
(3.9)

{v = 1,2). The first term to the right should be omitted in the
case of trap fluorescence. Since p, and p, only depend on
positions (isotropic transfer rates), one can use Eqgs. (2.9) and
{2.10) in order to obtain a substantial simplification of the
averages, as we anticipated in the previous section. We have

it () = f PYX, X, Xy, ()X, dX

— it [ Fi0)g @ a0,

The angular integrals have already been performed in Sec.
III A, namely

f?(n,)gl(n,)dnl =4,

[see Eq. (3.4)] and
f}”m,)gz(nl)dnl =1

Thus, introducing the positional average

{(~ )) f( Mryoedryy, (3.10)

one obtains
(P1(2)8:(2,)) = A,(P1(1)) pos» (3.11a)
2:1(2)82(22)) = (21(t)) pos (3.11b)

Note, that {(p,(t)) ,0s = {p(t)) sincep,(¢ ) does not depend on
orientations. Similarly, using Eq. (2.9), one can evaluate

(P21, () = ff’ UK 15X Xy P52 18, ()X .. A Xy

R AL

£y

Xpat)g, (Q,)dr ydryy dQy d,. (3.12)
One may now substitute the form (2.14) for G, and g, and g,
in terms of Wigner rotation matrices. Using the orthogona-

lity relations of the latter, and the relations (2.15), one ob-
tains

(Pt )g:(Q,)) = = 2P2 P2t )) pos
2 (877
25 1125, (G (rapslt ) pos  (3-13)
and
(P22 )82(22)) = (P2(t)) pos (3.13b)

It is natural (and also convenient for future comparison) to
define

=630 - () P2,

which approaches zero as r—w [see Egs. (2.15d) and
(2.15¢)], and thus represents the part of G9, due to correla-
tions. One then arrives at

(3.14)

Agt) = (A, = P)(py(t)) pos
2 :
+P+ 1+2P, (T) (N — 1)(822 ("12)P(t)) o (3.15)

for the anisotropy of the pure donor system, and

2 87%\?
m(—s—) <ggz(’12)P2(t)>pos/<P2(t)>pos
(3.16)

for the anisotropy of trap fluorescence. The denominator of
Eq. (2.2) does not show up in Eq. (3.15), because

1= (z p,m) = P1() s + (N = 1) P3O} s

i=1

A;(t) =ﬁ2+

which is adirect consequence of the fact, that I + 21, ~1,
is constant for a pure donor system (apart from the overall
decay with lifetime 7 which has been factored out of the
CRE’s from the start ). In the absence of orientational corre-
lations

G () = (872G S, (1) = (7P2)

or g5,(r)=0. Therefore, one sees immediately, that Eqs.
(3.15) and (3.16) reduce to the expressions (3.6) and (3.7) for
uncorrelated molecules. The intensity of trap fluorescence
(3.8) is, of course, not affected by correlations, since it in-
volves only p,.

J. Chem. Phys., Vol. 84, No. 6, 15 March 1986
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Note, that, as a result of the simple structure of g, and g,
and the restrictions on G imposed by symmetries, the expres-
sions for the anisotropy contain only one of the expansion
coefficients of the general two-particle distribution function.
It appears that this is even the case if one substitutes for G the
more general form (A2) or (A5) into Eq. (3.12), and that the
only changes, which then occur in the expressions following
Eq. (3.12), are replacements of G2,(r;,) and g3,(r,,) by
G 30(r12) and

5 ~—\2
gggo("lz)EG(zxz)o(’lz) (817'2P2)

respectively, in three dimensions, and by G - (r,) and

2
8% (rip) =GH(ry,) — (8ﬂ'2P2)

in two dimensions. Note that all these expansion coefficients
belong to the same expansion function D2, (Q,)D 2, (Q,),
since D3, (Q;,)=1 and exp[ — img@,,] = 1 for m=0. In
spite of the occurrence of only one coefficient in the expres-
sions (3.14) and (3.15), quantitative evaluation of the terms
due to correlations is not easy, as we will see in the next
section.

IV. THE ANISOTROPY FOR SPECIFIC TRANSFER
MODELS

So far we have not introduced specific solutions of the
CRE’s for p,(¢} and p,(t ) into our results (3.15) and (3.16) for
the anisotropy of fluorescence emission. For uncorrelated
molecules, only p,(¢) and its positional average is needed.
With orientational correlations present, the difficulty of ob-
taining quantitative results is greatly compounded by the
fact, that one also needs a solution for p,(¢ ). In addition, this
solution should have a form that allows for configurational
averages to be taken. Nevertheless, the anisotropy can be
further analyzed in two simple models of energy transfer.

A. No back transfer model with correlations

In this model, back transfer to an initially excited mole-
cule is completely neglected,'?> and molecules that surround
an initially excited one have no opportunity to transfer ener-
gy to each other. Clearly, in a pure donor system, this model
is a crude approximation, valid for small times and low den-
sity. It is, however, exact for donors surrounded by a huge
majority of traps. Now the CRE’s (2.1) reduce to

N
d_pl= — z wy; pa(1), (4.1a)
dt i=2

dp.

%:wl,.p,(t) for i>2, (4.1b)
with the initial condition

p:(0)=4, (4.1c)
Equation (4.1a) has as a solution

N
plt)=T[ e, (4.2)
i=2

so that

J. Knoester and J. E. Van Himbergen: Concentration depolarization

Pt)) poy = H( _w“’)dru---drw

i=2

=[7J;—wahn]”“ﬂ (4.3)

It is obvious that the factorization of the solution for p,, in
contributions from separate molecules (2,...,N ), greatly fa-
cilitates the positional averaging procedure, as is demon-
strated in Eq. (4.3). It is now easy to solve for p, by substitu-
tion of Eq. (4.2) into Eq. (4.1b). This solution, however, does
not factorize, and the positional average is therefore difficult
to perform. Since we do not need p, explicitly, but only
(832 (r1Pa(t )) pos » We evaluate this quantity directly. Because
the molecular positions and orientations are taken constant
in time (static limit),

d,, d .,
E(gzz (r120Pa(t ) pos = <E[822 (ri2lpa(t) ] >pos

= <g(2)2 (ri2)wyop, (2 ))pos' (4.4)
Substitution of Eq. (4.2) yields an average over a product,
which, at the expense of an extra time integration, reduces to

t 1 ,
(g% (712)02(8) ) pos = J- [7J-w12g(2)2 (riz)e™"2"dr,,
)

1 , N-—-2
X|—|e *"d ] ]dt’.
[Vf e

(4.5)
The anisotropies (3.15) and (3.16) then read

A;() =P+ (4, — P)[K, ()] !

8™\ 2
N-1 K K N-2
+(5)1+2P2( )f AN [K ()Y e

(4.6)
for the pure donor system, and
872 2
A, (1) =P ( ) N-—-1
(1) =P, + 5 T2 Pz( )

Xsz(t')[Kl(t’)]N“zdt'/(l - K1Y (47)
0

for donors surrounded by traps. And the intensity of trap
fluorescence is given by

Ly={1-[K,)]" e~ (4.8)
Here we have defined the following quantities:

K, ()= —I%Je—w""dr, (4.9a)

Ky(t)= —ill-fw(r)gg2 (r)e ~ “"idr. (4.9b)

Finally, through some technical algebra, the thermodynam-

ic limit N,V — w0, with N /V =p the constant (donor or trap)

density {a surface density in two dimensions), can be ob-

tained. For the anisotropy in Eq. (4.6), one thus finds in the

case of multipole-multipole rates (1.4),

8172) 2
5/ 1+42P,

A,(0) =P, + (4, — B)M,t) +(

X[ BB geom=ae Wi var
o m

where ¢ and p have been replaced by dimensionless quantities

(4.10a)

J. Chem. Phys., Vol. 84, No. 6, 15 March 1986
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t/randp = V, R p, with ¥, the volume of a A-dimensional
unit sphere (A = 2,3). The functions M, and M, are defined
by

M) = exp[ —%ﬁt“"‘f- X1 —e-*)dx],
(4.10b)

which is the continuum limit of a well-known result,?* and

Mz(t) =r
0

&, (R (-’-)""')e ~xx =AM gy, (4.10¢)
X

In introducing the parameter a=a/R, we have inserted a
cutoff in the integrals over relative positions, which prevents
molecules from being within a distance a of each other,
where a is characteristic of molecular dimensions. One may
consider this cutoff to be present in all integrals over relative
positions encountered so far. For clarity of notation, we have
mentioned it nowhere, before it was actually needed in the
derivation of the quantitative results (4.10). Analogous, and
equally extensive formulas in which precisely the same inte-
grals, M, and M), occur, can be derived for 4, (¢) and I, (¢).
Further quantitative results can only be obtained by numeri-
cal integration.

B. Pure donor system in the direct transfer mode!

A somewhat better model'* for solution of the CRE’s in
the pure donor system is obtained by allowing the initially
excited donor / = 1 to interact with every other donor with
back transfer, while donors 2, 3,..., N do not interact with
each other. The CRE’s, with symmetric rates given by (1.4),
then read

'd£l = — (z wu)pl + Z Wy; Pis (4.11a)
dt i#1 izl

dp; )

% =wy p,—wup, (i#1), (4.11b)

p:i(0) =4,. (4.11c)

After Laplace transformation . (p(s)=2{ p(#)]) it is
found™ that

. bl N XSW,;
=| e= - d 4.12
Pi(s) L e i];[zeXp[ s +w“] X (4.12)
and w
Dy(s) = 12 D1(s). (4.13)
Wy

Since .¥° and ( ),,, commute, it is clear that Eq. (3.15)
yields

ZHOELEENCIS A X0

+

2 (o
1+2P,\ 5

X(ggz (rlz)p2(s))pog . (4.14)
The positional average can again be reduced by virtue of the
fact, that p,(s) and p,(s) factorize into (an integral over) a
product of contributions from individual molecules. Taking
the thermodynamic limit, one arrives at

(Bl = [

xexp[ — MoV, J:o [1 —H(x,r)])‘“dr]dx,

(4.15)
and
(N — 1) @3 (r)p,(s))
oo o0 -1
=f e "ApV, mg‘z’z (N H(x,r)dr
o s S+ w(r)

Xexv[ — 8oV, rll —Hx,r}A~ ‘dr] dx, (4.16)

where

H (x,r)=exp{ — xsw(r)//{s + w(r)]}.

As in Sec. IV A, it is possible to transform to dimensionless
quantities and the resulting integrals may in principle be evalu-
ated numerically. But, in order to obtain the time-dependent
anisotropy, a numerical inverse Laplace transformation would
then have to be carried out. This clearly illustrates the limita-
tions to what can be achieved theoretically. In the present mod-
el, one is still able to save the factorization of the solution, and
hence perform the positional average, at the expense of a La-
place transformation. The inverse Laplace transformation,
however, becomes extremely difficult. On the other hand, Eq.
(4.14), together with Egs. (4.15) and (4.16), itself represents a
physical quantity of interest, since (1/7M,[s = (1/7)] is the
steady state anisotropy.'®

V. NUMERICAL RESULTS AND DISCUSSION

In order to gain quantitative insight in the effect of correla-
tions upon the emission anisotropy, we perform numerical cal-
culations for the following heuristic two-particle correlation
function: )

G (r12,0,2,)= { x(r2)0(Q, — Q,)f(Q))

+ [1 = x(rolf (@) (Q,)} (5.1)
Here y(r) is a function that completely determines the r depen-
dence of the correlations. The range of y should be [0,1], so that
G is positive definite. The § function in Eq. (5.1) is defined such
that it does not distinguish between different values of the third
Euler angle ¥,* since the molecules are axially symmetric. If
one chooses y(a) =1 and y(oo) = 0, expression (5.1) mimics
correlations that tend to align nearby molecules and vanish at
infinity. The typical length scale on which y(7) falls to zero is
now equivalent to the correlation length. We will choose, as a
characteristic example,

xlr)=e~ L (5.2)

Thus, in order to demonstrate the effect of correlations, we do
not specify the expansion coefficient g3, (r)in Eq. (3.15) or (3.16)
directly. Instead we choose the two-particle correlation func-
tion (5.1), with Eq. (5.2), whose physical meaning is intuitively
clear. Of course, Eq. (5.1) obeys all the requirements discussed
in Sec. II, and has therefore an expansion of the form (2.14).
The relevant expansion coefficient (3.14), which occurs in Eqs.
(3.15) and (3.16), is found to be
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82:(r) Z(TjJ—F (1 4»170P2 +%P4 — SPi)X(r).(SJ)

Upon substitution of Eq. (5.3), with Eq. (5.2), into Egs.
(3.15) and (3.16), one obtains equations for anisotropies in
terms of y(r), which can be worked out in the thermodynamic
limit, as was done in Sec. IV, for the two transfer models. Nu-
merical calculations are performed for the no back transfer mod-
el, and Figs. 2 and 3 show some of the results thus obtained in
two dimensions for an isotropic singlet distribution
(P, =P, =0) and a Forster transfer rate (m = 6). The solid
curves in Fig. 2 show the anisotropy of donor fluorescence,
A, (1)/4,(0) = A,(t)/A, (only initially excited donors contri-
bute at £ =0), for p = 1.0, @ = 0.1 and various values of the
rescaled correlation length A = L /R. The case A = Orepresents
absence of correlations and corresponds to relation (1.2). Clear-
ly, the anisotropy is influenced considerably by correlations.
That this may have an important effect on the value of the criti-
cal transfer distance R as predicted from anisotropy measure-
ments, can be illustrated by the following example. Imagine that
one observes a pure donor system with given molecular size q,
and of known density p. Suppose that the unknown value of R is
such that p = 1.0 and a = 0.1 and, furthermore, that correla-
tions given by Egs. (5.1) and (5.2) with A = 1.0 are present, but
that one is unaware of them. One chooses to analyze the data in
terms of a no back transfer model, which should be reasonable
for sufficiently small times. For 7S 7 the data are found to lie
close to the solid curve with A = 1.0, p = 1.0, and @ = 0.1, by
which they should be fitted in view of the correlations. Instead
they will be fitted for S 7 by the dashed—dotted curve with
A =0, = 0.30, and a = 0.18,” since one is unaware of corre-
lations and therefore ignores them. In this way one has underes-
timated R by 45%. Similar discrepancies are found at other
reduced densities for A = 1.0. Calculations have also been car-
ried out in three dimensions, for which similar features are ob-
served. In that case one finds that R can be underestimated by as
much as 30%. We reported these results earlier.'®

For the trap fluorescence, confusion of uncorrelated and
correlated systems is impossible, since in the first case the an-
isotropy would be constant in time. In these systems it may be

Agt)/A,

0 1 2
t

FIG. 2. 4,(t)/A, in two dimensions at some values of A for o= 1.0,
a =0.10, m = 6 (solid curves). A fit of the expression for the uncorrelated
case (A = 0) to the solid curve with A = 1.0 yields 5 = 0.30, 2 =0.18
(dashed—dotted curve). Part of the dashed—dotted curve cannot be distin-
guished from the solid curve. Time is given in units of the total lifetime.
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FIG. 3. 4,(1)/A,in two dimensions at some values of A for p = 1.0, @ = 0.10,
m = 6 (solid curve). Also shown is the trap intensity 7, (¢) in units of the total,
i.e., donor and trap intensity (dashed curve). Time is given in units of the total
lifetime.

possible to obtain experimentally the critical transfer distance
from the intensity and the correlation length from the anisotro-
py of trap fluorescence. The solid curves in Fig. 3 give the
anisotropy for p = 1.0, @ = 0.1 and various values of A. These
data demonstrate a strong dependence on the correlation
length and thus underline the suitability of the anisotropy as a
ruler for this quantity. Similar results are again found in three
dimensions. "

A remark should be made concerning the behavior of
A,(t)/ A, for small times. Since the intensity of trap fluorescence
(dashed curve) equals zero for ¢ = 0, it is hard to speak of the
anisotropy at ¢=0. One can, however, evaluate
lim,,, A, (t)/A,,and it turns out that (for P, = P, = 0) this limit
equals

(m—Apm—2] A" lexp[ — (r —a)/Aldr,
which in this case gives the values 0.94 and 0.97 for A = 0.50
and A = 1.0, respectively. The fact that these limits are so close
to unity can be understood as follows. For very small times,
only traps that are close to initially excited donors have a
chance to be excited. These traps are within the correlation

length so that they have a singlet distribution that closely re-
sembles that of the initially excited donors.

Another remark is in order concerning the behavior of the
anisotropies for large times. Clearly, in reality, the donor an-
isotropy will approach P, for large times, because the excita-
tions that have not decayed yet, by then have lost all memory of
the initial orientation, as a result of many successive jumps
through the system. Of course, our results (Fig. 2) do not pre-
dict this limit, because after the first jump the excitation re-
mains on the same molecule so that a limit higher than P,
follows. This higher limit is correct for the trap fluorescence,
for which it is also predicted, since our transfer model is exact
for this system.

Finally it is clear that one would like to insert a better
transfer model for the pure donor system into this theory, in
order to investigate the influence of correlations. Obviously,
correlations that tend to align nearby molecules always slow
down the decay of the donor anisotropy and thus will, if they
are ignored, cause an underestimated value for R. So, for other
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transfer models, we expect qualitatively similar behavior. How-
ever, we do not know a priori whether the quantitative effects
will be as drastic as discussed in this work. Although more
sophisticated models exist,'*""” it appears very difficult to de-
rive { X{r2lPa(t )) pos in the framework of any of these models.

APPENDIX

In this Appendix we give the extension of the most general
form of the pair correlation G(x,,,02,,{2,) that includes a depen-
dence on the direction of r,,. In that case one must insert in the
expansion of G an extra complete set of functions of this direc-
tion. In three dimensions such a set is provided by D%, (£,,),
where 0}, = (¢,2,6,2,0), 8,5, and @,, being the usual polar an-
gles in three dimensions. The unrestricted general form for G
then reads [cf. Eq. 2.13)]

G(rlz,ﬂl,ﬂz)

=Y GLI™ ™D 1, (D 12, (00D 15 (1) (A)

After working out all restrictions on G given by the proper-
ties (i)-{iii) in Sec. I1, Eq. (A1) reduces to

G(rxz’ﬂnﬂz)
= Z Gm‘i:zz_("lz)D w0l )Dm,o( D~ ~ s — mp0(S212)
({A2)
with
G775 (r)=0 unless L, + L, + L =even, (A3a)
Grriin=(—1GrLn, (A3b)
G Polr) is independ-ent of r} , (A3c)
Zoc(r) =0 otherwise
1 2L+ 15 {
GPo =—fr =——P (G°° =—-—-), A3d
LOO 817'sz (87]’2)2 L 000 {817’2)2 ( )
r—>(87°1G Poo
LZO( {8 L’m] as r—»>w. (Ale)
Ly rn—0 otherwnse

In two dimensions the direction of r,, is specified by
only one angle @,, and the unrestricted form for G is now

G {r;5,0,,,)

=Y GLI"""(rp)D o, (D 22, (Qo)e =792 (Ad)
The restrictions given in Sec. II now reduce this to
GrpQu) = T GP(ry) D 5o () D b (€)™ + ™o

(AS5)
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with
GTer)=0, unless L, + L, + m, + m,=even,
(A6a)
GTEen) = (= )™ ™G Try) (A6b)
G2 is independent of »
G 70(r) =0 otherwise
1 2L+ 1+ 1
col)=gale =Tgop v G0 =2p
(A6d)
N—87 G,
G Zor, (N—{87%) L,o} 25 roseo. A6
GrAr0 otherwwe

Asin Sec. I1, all unnecessary indices have been omitted from
the final expansions (A2) and (AS5). Note that the results in-
deed reduce to Eq. (2.14) with Eq. (2.15) if one assumes that G
in Egs. (A2jand (A5)does not depend on Q,, and @, ,, respec-
tively.

!G. Weber, Biochem. J. 75, 335 (1960).

2C. Bojarski and G. Obermueller, Acta Phys. Pol. A 50, 389 (1976).

3C. R. Gochanour and M. D. Fayer, J. Phys. Chem. 85, 1989 (1981).

“A. Kawski and H. Szamcifiski, Z. Naturforsch. Teil A 37, 64 (1982).

5Th. Forster, Ann. Phys. (Leipzig) 2, 55 (1948).

SA. Ore, J. Chem. Phys. 31, 442 (1959).

R. S. Knox, Physica 39, 361 (1968).

SF. W. Craver and R. S. Knox, Mol. Phys. 22, 385 (1971).

9C. Bojarski, J. Lumin. 5, 413 (1972).

19R. P. Hemenger and R. M. Pearlstein, J. Chem. Phys. 59, 4064 (1973).

Y'E. N. Bodunov, Opt. Spectrosc. 41, 584 (1976).

12D, L. Huber, D. S. Hamilton, and B. Barnett, Phys. Rev. B 16, 4642 (1977),

135, W. Haan and R. Zwanzig, J. Chem, Phys. 68, 1879 (1978).

s, K. Lyo, Phys. Rev. B 20, 1297 (1979).

15C. R. Gochanour, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 70, 4254
(1979).

%K. Godzik and J. Jortner, J. Chem. Phys. 72, 4471 (1980).

7A. Blumen, J. Klafier, and R. Silbey, J. Chem. Phys. 72, 5320 (1980).

18C. Zannoni, in The Molecular Physics of Liguid Crystals, edited by G. R. Luck-
hurst and G. W. Gray (Academic, New York, 1979), Chap. 3,

197, Knoester and J. B. Van Himbergen, J. Phys. Colloque 46 (1985) (Proceed-
ings of the Fifth International Conference on Dynamical Processes in the Ex-
cited States of Solids).

®See, e.g., M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New
York, 1957).

21w, A. Steele, J. Chem. Phys. 39, 3197 (1963).

ZThe arguments needed are equivalent to those applied in Ref. 10.

2A. Blumen and J. Manz, J. Chem. Phys. 71, 4694 (1979).

This means that the expansion of the § function in Wigner rotation matrices
reads:

80, ~ n)—zz’““ ~ VDo (AD™ o ().
B Any A = 0 fit only depends on a for very small times t<a™ (cf. Ref. 23). The
overall fit is therefore not very sensitive to the precise value of a.

J. Chem. Phys., Vol. 84, No. 6, 15 March 1986

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



