51 research outputs found
Phenotype Variability in Czech Patients Carrying PAX6 Disease-Causing Variants
The aim of this study was to report PAX6 disease-causing variants in six Czech families, to describe the associated phenotypes, and to perform functional assessment of the splice site variants. Detailed ophthalmic examination was performed. The PAX6 coding region was directly sequenced in three probands. Two probands were analysed by exome sequencing and one by genome sequencing. The effect of two variants on pre-mRNA splicing was evaluated using an exon trapping assay. Six different heterozygous PAX6 variants were identified, with c.111_120del and c.1183+1G˃T being novel. Both c.1183+1G˃T and c.1032+1G>A were proved to cause aberrant splicing with exon skipping and subsequent frameshift. The phenotypic features were variable between and within families. One individual, aged 31 years, presented with mild unilateral ptosis accompanied by aniridia in the right eye, partial aniridia in the left eye, and bilateral congenital cataracts, without marked foveal hypoplasia. Bilateral microcornea, partial aniridia, congenital cataracts, and a large posterior segment coloboma were found in another proband, aged 32 years. One child, aged 8 years, had bilateral high myopia, optic nerve colobomas, anterior polar cataracts, but no iris defects. Another individual, aged 46 years, had bilateral congenital ptosis, iris hypoplasia, keratopathy with marked fibrovascular pannus, anterior polar cataract, and foveal hypoplasia combined with impaired glucose tolerance. However, his daughter, aged 11 years, showed classical features of aniridia. Our study extends the genetic spectrum of PAX6 disease-causing variants and confirms that the associated phenotypic features may be very broad and different to the 'classical' aniridia
Novel disease-causing variants and phenotypic features of X-linked megalocornea
Purpose: The aim of the study was to describe the phenotype and molecular genetic causes of X-linked megalocornea (MGC1). We recruited four British, one New Zealand, one Vietnamese and four Czech families. //
Methods: All probands and three female carriers underwent ocular examination and Sanger sequencing of the CHRDL1 gene. Two of the probands also had magnetic resonance imaging (MRI) of the brain. //
Results: We identified nine pathogenic or likely pathogenic and one variant of uncertain significance in CHRDL1, of which eight are novel. Three probands had ocular findings that have not previously been associated with MGC1, namely pigmentary glaucoma, unilateral posterior corneal vesicles, unilateral keratoconus and unilateral Fuchs heterochromic iridocyclitis. The corneal diameters of the three heterozygous carriers were normal, but two had abnormally thin corneas, and one of these was also diagnosed with unilateral keratoconus. Brain MRI identified arachnoid cysts in both probands, one also had a neuroepithelial cyst, while the second had a midsagittal neurodevelopmental abnormality (cavum septum pellucidum et vergae). //
Conclusion: The study expands the spectrum of pathogenic variants and the ocular and brain abnormalities that have been identified in individuals with MGC1. Reduced corneal thickness may represent a mild phenotypic feature in some heterozygous female carriers of CHRDL1 pathogenic variants
Phenotype and genotype of concurrent keratoconus and Fuchs endothelial corneal dystrophy
PURPOSE: To characterise the phenotype and genotype of concurrent keratoconus and Fuchs endothelial corneal dystrophy (KC + FECD). METHODS: We recruited 20 patients with concurrent KC + FECD for a retrospective observational case series from the United Kingdom and the Czech Republic. We compared eight parameters of corneal shape (Pentacam, Oculus) with two groups of age-matched controls who had either isolated keratoconus (KC) or isolated FECD. We genotyped probands for an intronic triplet TCF4 repeat expansion (CTG18.1) and the ZEB1 variant c.1920G >T p.(Gln640His). RESULTS: The median age at diagnosis of patients with KC + FECD was 54 (interquartile range 46 to 66) years, with no evidence of KC progression (median follow-up 84 months, range 12 to 120 months). The mean (standard deviation (SD)) of the minimum corneal thickness, 493 (62.7) μm, was greater than eyes with KC, 458 (51.1) μm, but less than eyes with FECD, 590 (55.6) μm. Seven other parameters of corneal shape were more like KC than FECD. Seven (35%) probands with KC + FECD had a TCF4 repeat expansion of ≥50 compared to five controls with isolated FECD. The average of the largest TCF4 expansion in cases with KC + FECD (46 repeats, SD 36 repeats) was similar to the age-matched controls with isolated FECD (36 repeats, SD 28 repeats; p = 0.299). No patient with KC + FECD harboured the ZEB1 variant. CONCLUSIONS: The KC + FECD phenotype is consistent with KC but with superimposed stromal swelling from endothelial disease. The proportion of cases with a TCF4 expansion is similar in concurrent KC + FECD and age-matched controls with isolated FECD
Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency 15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease
Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments
Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4
In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease
A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease
Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2
Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.−339_361dup for CHED1 and c.−370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.−274T>G and c.−307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies
Whole genome sequencing for USH2A-associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.</p
- …