163 research outputs found

    Molecular lanthanide single-ion magnets: from bulk to submonolayers

    Get PDF
    Single-ion magnets (SIMs) are mononuclear molecular complexes exhibiting slow relaxation of magnetization. They are currently attracting a lot of interest because of potential applications in spintronics and quantum information processing. However, exploiting SIMs in, e.g. molecule-inorganic hybrid devices requires a fundamental understanding of the effects of molecule-substrate interactions on the SIM magnetic properties. In this review the properties of lanthanide SIMs in the bulk crystalline phase and deposited on surfaces in the (sub) monolayer regime are discussed. As a starting point trivalent lanthanide ions in a ligand field will be described, and the challenges in characterizing the ligand field are illustrated with a focus on several spectroscopic techniques which are able to give direct information on the ligand-field split energy levels. Moreover, the dominant mechanisms of magnetization relaxation in the bulk phase are discussed followed by an overview of SIMs relevant for surface deposition. Further, a short introduction will be given on x-ray absorption spectroscopy, x-ray magnetic circular dichroism and scanning tunneling microscopy. Finally, the recent experiments on surface-deposited SIMs will be reviewed, along with a discussion of future perspectives

    Voltage-controlled electron-hole interaction in a single quantum dot

    Full text link
    The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange interaction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures; content as publishe

    Observation of Faraday rotation from a single confined spin

    Get PDF
    Ability to read-out the state of a single confined spin lies at the heart of solid-state quantum information processing. While all-optical spin measurements using Faraday rotation has been successfully implemented in ensembles of semiconductor spins, read-out of a single semiconductor spin has only been achieved using transport measurements based on spin-charge conversion. Here, we demonstrate an all-optical dispersive measurement of the spin-state of a single electron trapped in a semiconductor quantum dot. We obtain information on the spin state through conditional Faraday rotation of a spectrally detuned optical field, induced by the polarization- and spin-selective trion (charged quantum dot) transitions. To assess the sensitivity of the technique, we use an independent resonant laser for spin-state preparation. An all-optical dispersive measurement on single spins has the important advantage of channeling the measurement back-action onto a conjugate observable, thereby allowing for repetitive or continuous quantum nondemolition (QND) read-out of the spin-state. We infer from our results that there are of order unity back-action induced spin-flip Raman scattering events within our measurement timescale. Therefore, straightforward improvements such as the use of a solid-immersion lens and higher efficiency detectors would allow for back-action evading spin measurements, without the need for a cavity

    Topical NSAIDs for acute pain: a meta-analysis

    Get PDF
    BACKGROUND: A previous systematic review reported that topical NSAIDs were effective in relieving pain in acute conditions like sprains and strains, with differences between individual drugs for efficacy. More trials, a better understanding of trial quality and bias, and a reclassification of certain drugs necessitate a new review. METHODS: Studies were identified by searching electronic databases and writing to manufacturers. We selected randomised double blind trials comparing topical NSAID with either placebo or another active treatment in adults with acute pain, and extracted dichotomous information approximating to a 50% reduction in pain at one week, together with details of adverse events and withdrawals. Relative benefit and number-needed-to-treat (NNT), and relative risk and number-needed-to-harm (NNH) were calculated, with sensitivity analyses where appropriate to investigate differences between individual drugs and aspects of trial design. RESULTS: Twenty-six double blind placebo controlled trials had information from 2,853 patients for evaluation of efficacy. Topical NSAID was significantly better than placebo in 19 of the 26 trials, with a pooled relative benefit of 1.6 (95% confidence interval 1.4 to 1.7), and NNT of 3.8 (95% confidence interval 3.4 to 4.4) compared with placebo for the outcome of half pain relief at seven days. Results were not affected by outcome reported, or condition treated, but smaller trials yielded a larger estimate of efficacy. Indirect comparisons of individual topical NSAIDs showed that ketoprofen was significantly better than all other topical NSAIDs, while indomethacin was barely distinguished from placebo. Three trials, with 433 patients, compared topical with oral NSAID (two trials compared the same drug, one compared different drugs) and found no difference in efficacy. Local adverse events, systemic adverse events, or withdrawals due to an adverse event were rare, and no different between topical NSAID and placebo. CONCLUSIONS: Topical NSAIDs were effective and safe in treating acute painful conditions for one week

    Network protocol scalability via a topological Kadanoff transformation

    Full text link
    A natural hierarchical framework for network topology abstraction is presented based on an analogy with the Kadanoff transformation and renormalisation group in theoretical physics. Some properties of the renormalisation group bear similarities to the scalability properties of network routing protocols (interactions). Central to our abstraction are two intimately connected and complementary path diversity units: simple cycles, and cycle adjacencies. A recursive network abstraction procedure is presented, together with an associated generic recursive routing protocol family that offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio

    Magnetism of Ho and Er Atoms on Close-Packed Metal Surfaces

    Get PDF
    We investigated the magnetic properties of individual Ho atoms adsorbed on the (111) surface of Pt, which have been recently claimed to display single ion magnetic behavior. By combining x-ray absorption spectroscopy and magnetic dichroism measurements with ligand field multiplet calculations, we reveal a ground state which is incompatible with long spin relaxation times, in disagreement with former findings. A comparative study of the ground state and magnetic anisotropy of Ho and Er on Pt(111) and Cu(111) emphasizes the different interaction of the 4f orbitals with localized and delocalized substrate states. In particular, we find a striking rotation of the magnetization easy axis for Er, which changes from out of plane on Pt(111) to in plane on Cu(111)

    The Spin-Reorientation Transition in TmFeO3

    Full text link
    X-ray magnetic circular and linear dichroism (XMCD and XMLD) have been used to investigate the Fe magnetic response during the spin reorientation transition (SRT) in TmFeO3. These experiments are complemented with resonant magnetic diffraction experiments at the Tm M5 edge to study simultaneously the induced magnetic order in the Tm 4f shell and the behavior of the Tm orbitals through the SRT. Comparing the Fe XMLD results with neutron diffraction and magnetization measurements on the same sample indicate that the SRT has an enhanced temperature range in the near surface region. This view is supported by the resonant soft x-ray diffraction results at the Tm M5 edge. These find an induced magnetic moment on the Tm sites, which is well-described by a dipolar mean field model originating from the Fe moments. Even though such a model can describe the 4f response in the experiments, it is insufficient to describe the SRT even when considering a change in the 4f anisotropy. Moreover, the results of the Fe XMCD are indicative of a decoupling of spin canting and antiferromagnetic spin rotation in the near surface regime close to the SRT, which remains to be understood.Comment: 28 pages, 12 figure

    Confluence of resonant laser excitation and bi-directional quantum dot nuclear spin polarization

    Full text link
    Resonant laser scattering along with photon correlation measurements have established the atom-like character of quantum dots. Here, we present measurements which challenge this identification for a wide range of experimental parameters: the absorption lineshapes that we measure at magnetic fields exceeding 1 Tesla indicate that the nuclear spins polarize by an amount that ensures locking of the quantum dot resonances to the incident laser frequency. In contrast to earlier experiments, this nuclear spin polarization is bi-directional, allowing the electron+nuclear spin system to track the changes in laser frequency dynamically on both sides of the quantum dot resonance. Our measurements reveal that the confluence of the laser excitation and nuclear spin polarization suppresses the fluctuations in the resonant absorption signal. A master equation analysis shows narrowing of the nuclear Overhauser field variance, pointing to potential applications in quantum information processing

    Design considerations in a clinical trial of a cognitive behavioural intervention for the management of low back pain in primary care : Back Skills Training Trial

    Get PDF
    Background Low back pain (LBP) is a major public health problem. Risk factors for the development and persistence of LBP include physical and psychological factors. However, most research activity has focused on physical solutions including manipulation, exercise training and activity promotion. Methods/Design This randomised controlled trial will establish the clinical and cost-effectiveness of a group programme, based on cognitive behavioural principles, for the management of sub-acute and chronic LBP in primary care. Our primary outcomes are disease specific measures of pain and function. Secondary outcomes include back beliefs, generic health related quality of life and resource use. All outcomes are measured over 12 months. Participants randomised to the intervention arm are invited to attend up to six weekly sessions each of 90 minutes; each group has 6–8 participants. A parallel qualitative study will aid the evaluation of the intervention. Discussion In this paper we describe the rationale and design of a randomised evaluation of a group based cognitive behavioural intervention for low back pain
    • …
    corecore