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Abstract

®
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Single-ion magnets (SIMs) are mononuclear molecular complexes exhibiting slow relaxation
of magnetization. They are currently attracting a lot of interest because of potential
applications in spintronics and quantum information processing. However, exploiting SIMs in,
e.g. molecule-inorganic hybrid devices requires a fundamental understanding of the effects of
molecule—substrate interactions on the SIM magnetic properties. In this review the properties
of lanthanide SIMs in the bulk crystalline phase and deposited on surfaces in the
(sub)monolayer regime are discussed. As a starting point trivalent lanthanide ions in a ligand
field will be described, and the challenges in characterizing the ligand field are illustrated with
a focus on several spectroscopic techniques which are able to give direct information on the
ligand-field split energy levels. Moreover, the dominant mechanisms of magnetization
relaxation in the bulk phase are discussed followed by an overview of SIMs relevant for
surface deposition. Further, a short introduction will be given on x-ray absorption
spectroscopy, x-ray magnetic circular dichroism and scanning tunneling microscopy.

Finally, the recent experiments on surface-deposited SIMs will be reviewed, along with a

discussion of future perspectives.

Keywords: single-molecule magnets, single-ion magnets, surfaces, lanthanides, magnetic

anisotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

There is currently a high level of interest in mononuclear
lanthanide (Ln) complexes triggered by Ishikawa’s discovery
of slow relaxation of magnetization in bis(phthalocyaninato)-
terbium about a decade ago [1]. Previously, this phenomenon
had been observed in polynuclear transition metal clusters, so-
called single-molecule magnets (SMMs) [2—4]. In this context,
single-ion magnets (SIMs) can be defined as mononuclear
metal-organic complexes which retain their magnetization
for a significant amount of time ranging from milliseconds
up to several hours. While several transition metal SIMs
have been demonstrated [5, 6], Ln ions are particularly good
candidates for SIMs because most of them feature large spin

0953-8984/15/183203+20$33.00

and unquenched orbital angular momenta, and ligand-field
splittings are in general larger than those of first row transition
metal ions [7]. Similar to polynuclear coordination clusters
SIMs are true quantum magnetic entities, that is, they exhibit a
discrete spectrum of magnetic quantum states. This quantum
magnetism naturally asks for an investigation whether such
molecules can be used as qubits to encode and manipulate
quantum information [8,9]. The key quantity for such
applications is the transverse relaxation or decoherence time
of the angular momentum characterizing on which timescale
the stored quantum information decays. First demonstrations
of quantum coherence in polynuclear clusters have been
made [10-12], however, only very few experiments have been
reported on mononuclear 4f systems [13—15].

© 2015 IOP Publishing Ltd  Printed in the UK
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In order to exploit the molecules’ properties, e.g. in
spintronics applications [16-18] it is necessary to transfer
the molecules from the native molecular crystal to other
environments. A promising path is to deposit the molecules
on appropriate surfaces [19-23], but also, a number of
breakthroughs have been achieved using SIMs anchored on
carbon nanotubes (CNTs) [24,25]. The more simple structure
of SIMs which is often less fragile than that of SMMs
is advantageous here, because stabibility is needed for the
molecules to survive the thermal evaporation used for vacuum
deposition and eventually the interaction with the surface.

The present review attempts to give an overview of the
most important aspects of these fascinating nano-objects in
view of organizing and addressing them on surfaces. It
tries to address fundamental concepts such as ligand field,
symmetries and magnetization relaxation processes as well as
the most recent research on surface adsorbed SIMs. After this
Introduction trivalent lanthanide ions will be discussed. Then
an overview of the different relevant mechanisms responsible
for magnetization relaxation in bulk SIMs will be given
followed by a discussion of mainly those SIMs which currently
play an important role in surface experiments. In the last
section, a brief summary of x-ray absorption spectroscopy
(XAS) and scanning tunneling microscopy (STM) which are
useful to study surface deposited SIMs is presented, and results
obtained on surface-adsorbed SIMs will be reviewed.

Note that this review does not try to list the many existing
SIMs and all applicable techniques. Those topics have been
subject to recently published reviews and book chapters [26—
29]. This Introduction will be ended with two final remarks
regarding the nomenclature: While in this review SIMs are
defined as organic complexes it is noted that considerable
progress is made in related, but purely inorganic, systems
of single metal atoms directly deposited on surfaces [30, 31].
Further, it should be noted that the term SIM will be used
in a wider sense, neglecting a possible further discrimination
of ‘field-induced’ SIMs, that is, SIMs which do not show
remanence but exhibit slow magnetization relaxation in an
applied magnetic field.

2. Physical properties of trivalent lanthanide ions

2.1. Free ion

The free Ln(IIl) ion is well described by the Hamiltonian
I:Ifree = ﬁkin + I:Iee + ﬁsoc including the kinetic energy,
electron—electron repulsion and spin—orbit coupling (SOC) in
the order of appearance of the terms. When written out, this
Hamiltonian reads

~2 2 2
N D; Ze e A
H = B — + _— l - 8S;.
free Z (Zm ri ) Z 7 — )] Xi:& L

i i<j
(1)

Here, the indices i and j refer to the ith or the jth electron,
respectively. p; is the linear momentum operator, m the
electron mass, Z the nuclear charge in units of e, r; the position
vector, I; and §; are the orbital and spin angular momentum
operators and &; the SOC strength. As a consequence of
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Figure 1. Energy level scheme of Er(III) depicting the effect of
subsequent applications of the different Hamiltonian terms
explained in the text (not to scale).

the Russell-Saunders coupling of the total spin and orbital
angular momenta S and L, Hamiltonian equation (1) gives
rise to a series of multiplets characterized by the total angular
momentum J being a ‘good’ quantum number. The ground
state multiplet is determined by Hund’s rules. As an example,
the lowest-lying multiplets of the free Er(IIl) ion are depicted
in figure 1. The ground state is well separated from the excited
multiplets by several thousands of cm™! (hundreds of meV),
typical for the whole Ln series. Importantly, since the partially
filled 4f shell is screened by the outer closed shells, the Ln
magnetic moment is strongly localized.

2.2. Ligand field

Ligands are small molecules or ions which bind to the central
metal ion forming a metal complex. Ligands provide spatially
localized, usually negative, charges which interact via the
resulting electrostatic fields with the 4f orbitals of the Ln(III)
ions.

Because of the strong SOC in Ln compared to 3d transition
metals, and because of the localized nature of the partially filled
4f shell the energy scales of the electron—electron repulsion
E.. and the SOC Egqc are always larger than that of the ligand
field E r. This means that for Ln ions E.. > Esoc > Eir
and the ligand-field Hamiltonian ﬁLF which will be introduced
below can be treated as a perturbation. Hence, in first order
the multiplet structure of the free Ln(III) ion is not modified
by ﬁLp, and the total angular momentum J remains a good
quantum number. The effect of the ligand field is then to
lift the degeneracy of the multiplets of electronic states which
become linear combinations of the Zeeman components {|m)}
(see figure 1). It should be noted that this situation corresponds
exactly to the presence of magnetic anisotropy, meaning
that the energy-split electronic states have different magnetic
properties, for example different directions of the magnetic
moment. Because of the seven 4f orbitals, the magnetic
anisotropy ‘landscape’, that is, the magnetic susceptibility as
a function of polar and azimuthal angles x (6,¢), can be much
more complicated than in the simple axial case.

The ligand-field splittings of the multiplets are usually
much larger than those obtained in 3d transition metals.
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Table 1. Examples of Stevens operators.
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Furthermore, the orbital angular momentum of the latter is
often quenched by the ligand field while this does not happen
for the Ln(IIl) ions giving rise to large magnetic momenta.
This holds true especially for the late Ln(III) which exhibit
parallel alignment of their spin and orbital angular momenta.
The Gd(III) ion with ground state 8S; 2 represents a special
case because of its vanishing orbital angular momentum. As
a consequence, it does not interact in first order with the
ligand field resulting in small ligand-field splittings and weak
magnetic anisotropy.

Adding the ligand field term as well as Zeeman and
hyperfine interactions to equation (1) yields

ﬁ = I:Ifree + I/_\ILF + I:IZeeman + I:\Ihyp- 2

The effect of these Hamiltonian terms on the energy spectrum
are visible in figure 1.

In a phenomenological notation the ligand field can be
expressed as Hyp = kg B C{ (i) (‘Wybourne notation’).
The é‘Z (i) are the ligand-field one-electron tensor operators
acting on electron i with corresponding coefficients é,f and
—q<k<q,q9=246.

Since the interaction with the ligand field is small
compared to the spin—orbit interaction it can be expressed in
first order as Stevens operators Hy g j = P B} (5,3 (J) [32].
Here, the operators are simple functions of the components
of J and their power. A few examples of relevant Stevens
operators are given in table 1. The restriction of the basis set
to the ground state multiplet provides an efficient simplification
in which I:Ifree is only implicitly contained. This is reasonable
for the description of the magnetic properties but of course it
fails in describing optical absorption or luminescence which
have different multiplets as initial and final states. With these
considerations one has

Hy = Hikj + Hzeeman,s + Hiyp s, 3

with I"\ILFJ as previously defined and I:Izeeman,] = giupd -
B. The Zeeman term has been rewritten using the
Landé g-factor which is given by g = (3/2) +
((S(S+1)—L(L+1))/2J(J+1)) and up is the Bohr
magneton. The hyperfine interaction I,:Ihyp’_] will not be
discussed here in detail, and its energy scale is too small to be
directly observed in most spectroscopic experiments on SIMs.
However, anticipating the discussion in section 3.1, it plays a
crucial role regarding the magnetization relaxation.

The different coefficients B in Hy p yare related to the B}
by the tabulated Stevens factors «, 8, y. This and the relation
of the coefficients with point charge approaches have been
summarized in great detail, e.g. in [33,34]. The B{ — BY
transformation bears important consequences for the nature
of the magnetic anisotropy: Different Ln(Ill) ions exhibit
different magnetic anisotropies when subjected to the same
ligand field [35,36]. The changes can be as drastic as going

from easy-plane to easy-axis type anisotropy upon exchanging
the Ln(III) ion [37, 38].

Neglecting the hyperfine interaction, one is left with the
experimental determination of the Stevens parameters B} in
order to understand and describe the magnetic properties of
SIMs. As it will be discussed below, the ligand-field symmetry
determines which of the 27 possible Stevens parameters
are allowed to be non-zero. At this point it should also
be mentioned that an alternative to describing the ligand
field by Stevens parameters as done here is provided by the
angular overlap model [39—41] in which the parameterization
is performed in a chemically more intuitive way.

2.3. Symmetries

Time-reversal and point-group symmetries have a severe
impact on the magnetic properties of the Ln ions. In the
following the effect of these symmetries will be described.

2.3.1. Time-reversal symmetry. Depending on the integer
or half-integer nature of J there is a fundamental difference
regarding the energy spectrum at zero magnetic field: In the
case of half-integer J it is impossible to lift all degeneracies
by a purely electric field, e.g. the ligand field, without any
symmetry whatsoever. Kramers theorem [42] states that there
is at least a double degeneracy left. In contrast, in the presence
of magnetic fields the degeneracy is fully lifted. Kramers
theorem does not hold for integer-J systems, i.e. the electronic
states can be nondegenerate if the ligand field exhibits a low
enough symmetry. The aspect of time-reversal symmetry
becomes more complicated when also the nuclear spin is
included: In both integer and half-integer J systems it has
a pronounced effect on quantum tunneling of magnetization
(QTM) (see section 3.1).

2.3.2. Point-group symmetries. As already mentioned, in the
absence of any ligand-field symmetry, there are 27 non-zero
Stevens parameters for Ln ions. It is obvious that the reliable
determination of this many parameters by, e.g. fitting models
to experimental data is close to impossible, even when single-
crystal magnetization M (B) data and magnetic susceptibility
x(T) are available. In the presence of symmetries the
number of non-zero coefficients in I:ILF’] can be drastically
reduced because those which are not invariant under the
symmetry operations of the point group of the ion’s site must
be identically to zero. The allowed Stevens coefficients for
different ligand-field symmetries are given in table 2. The
cases of other symmetries not mentioned in this table are listed
in [33, 34]. Obviously, in the presence of high symmetry, there
are only few allowed coefficients to be determined facilitating
the description of the magnetic properties by Hamiltonians
equations (2) and (3).

2.4. Pseudospin-1/2 Hamiltonian

The low-lying doublet states are most relevant in SIMs since
their composition and wavefunctions have a strong influence
on the speed of magnetization relaxation. Usually these states
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Table 2. Allowed Stevens operator coefficients for selected ligand-field symmetries. Adapted from [34].

By B B, By Bi B, B Bi, B} B B B, Bl Bl Bi
Cy |S4| Can + + + + +
Dy |Cay| Dog|Dapy - + + + + +
C5|S6 + + + + + +
D3 |Csy| D3y + + + + + +
Ce |Capn| Cen + + + +
D¢ |Cey| D3n|Den  + + + +
T4 10| Oy + + + +
are well separated in energy from excited states giving rise ; ; Ligand —— Optical Absorption
to an Ising magnet behaviour. Since mainly the lowest-lying ~ SPin-OrbitInt. (Electric) WA Optical Luminescence
states are involved in the SIM dynamics, one could conclude AL Field
that all other states can be neglected. Section 3 reveals that i i — INS
this is not true, especially when magnetization relaxation is i1z ===
dominated by spin—phonon coupling. Furthermore, the ligand - é
field determines the wavefunctions of the electronic states. 4'13/2 =
Condensing the basis set down to two states and working with RO — - —
a pseudospin T = 1/2 Hamiltonian, however, can be useful if ? —
ligand-field symmetry is too low to facilitate an experimental e _—%E

determination of all allowed Stevens parameter values. The
number of parameters is then strongly reduced since there are
no ligand-field coefficients, and t = 1/2 can only be split by a
magnetic field. The magnetic anisotropy is reintroduced via an
anisotropic, effective g tensor A= UBT - g- B [43,44]. Other
similar models based on a restricted but larger Hilbert space
have also been successfully applied to polynuclear clusters
containing lanthanides [45, 46].

2.5. Determination of ligand-field parameters

As mentioned before, in order to understand magnetic
properties of SIMs it is necessary to determine ligand-field
parameters, e.g. expressed as Stevens operator coefficients,
from experimental data. Powder magnetization M (B) and
susceptibility x (7)) data are barely sufficient for multiple
parameter determination. The availability of single-crystal
magnetic data improves the situation, however, even in such
a case the accuracy of the excited energy levels and the
corresponding wave functions will be limited since at the
elevated temperatures needed to populate these energy levels
many other levels are populated, too, leading to an average
magnetic response.

Thus the most preferred techniques, in addition to the
magnetization measurements, are spectroscopic techniques
such as electron paramagnetic resonance (EPR) [43], inelastic
neutron scattering (INS) [47,48] or optical absorption and
luminescence [49-51]. Spectroscopic techniques allow for the
addressing of the energies and wave functions of each multiplet
substates separately because they directly probe the energetic
splitting between an initial state, which is the ground state at
low temperatures, and a final state.

The typical initial and final states associated with the
different spectroscopic techniques are sketched in figure 2. The
lowest energy scales are typically probed by EPR spectroscopy
covering energies of ~0.3-30cm~! (0.04-3.7meV). This
yields the effective g-tensor within the pseudospin-1/2
framework described earlier in the text. With high-frequency

HE—5

Figure 2. Energy level scheme of Er(III) depicting the typical
energy levels involved in optical, neutron and magnetic resonance
spectroscopic techniques.

EPR [52-57] it is often possible to measure the energy of
the first excited state. However, many Ln SIMs exhibit a
rather large excited-state separation which is too large even for
state-of-the-art high-frequency EPR setups. INS, in which the
energy loss of neutrons upon, e.g. exciting magnetic transitions
in a SIM, is measured, has only been exploited rarely [58, 59]
and earlier in an Yb complex [50]. It covers an energy range
of up to several hundreds of cm™! (~50meV), yet, this is
still not enough to reach the highest energy levels of ligand-
field split multiplets. High-resolution optical spectroscopy is
probably the most powerful technique in this respect, however,
the resulting absorption and luminescence spectra can be
difficult to interpret because of the presence of vibrational
bands [51,60]. Also the 4f-4f optical transitions may be
dominated by strong ligand absorption bands.

Because of the many experimental obstacles there is a
lot of interest in determining ligand-field parameters from
first principles methods. The reason is obvious: If reliable
predictions are available, promising molecular structures can
be readily identified and research efforts can be focused on
the most attractive candidates. It turns out, however, that
such calculations are by no means an easy task. Multi-
configurational self-consistent field methods such as CASSCEF,
initially employed for the study of the magnetic properties of
a Cu(Il)-Gd(III) complex [61], have turned out to be quite
successful for the ab initio calculation of magnetic properties
of Ln ions [62-64]. The transverse g-factors (gxx. gyy) found
in the calculations provide a measure of the ground-state
mixing introduced by non-axial ligand-field contributions.
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This mixing strength, in turn, indicates how prone a system is
to QTM induced by intermolecular and hyperfine interaction,
e.g. [65,66]. This indeed has been explicitly demonstrated to
correlate with the SIM behavior for the case of Dy mononuclear
complexes [65]. The exact energy spectrum could be obtained
within an accuracy of ~30% [59].

The program CONDON [67-69] allows for a treatment
of the full Hilbert space of all possible microstates of the
4f shell and outputs magnetic properties such as magnetic
susceptibility and field-dependent magnetization. Similarly,
the recently developed software SIMPRE [70] is able to
calculate magnetic properties of SIMs from sets of Stevens
parameters, and it works with effective point-charge models
which can provide a more intuitive insight than full ab initio
calulcations. However, their performance depends crucially
on the procedure of obtaining the effective coordinates and the
magnitude of the effective point charges which do not have to
coincide with the coordinates and the formal oxidation states of
the ligand atoms. Nevertheless, effective point-charge models
have been demonstrated to be useful tools when working with
SIMs [36,71-73].

3. Relaxation of magnetization

Magnetization relaxation in SIMs arises from the coupling
of the magnetic moment to different environments such as
the lattice of the molecular crystal, other neighboring SIMs
in the lattice or the conduction band electrons in a metallic
substrate on which SIMs are deposited. Relaxation leads to
the time evolution of the SIM magnetization towards thermal
equilibrium with the environment, after it has been brought out-
of-equilibrium by an external perturbation. The response to the
perturbation is related to the fluctuations of the single magnetic
moments by the fluctuation-dissipation theorem. Since in
SIMs the magnetization dynamics takes place between the
lowest energy Ising doublet states as already mentioned in
the previous section, relatively simple models involving two
quantum states (and partially a third excited state) are able to
grasp the mechanisms of QTM and spin—phonon coupling.

For an angular momentum there is longitudinal and
transverse relaxation, with associated timescales 7; and 1,.
The first one involves an exchange of energy with the lattice
or phonon bath, while the second one does not. Here,
the longitudinal relaxation is referred to as magnetization
relaxation while the transverse relaxation is the decoherence,
i.e. the loss of phase information. Obviously, for classical
data storage applications, the decoherence is less important,
while long decoherence times are of high interest for quantum
computing schemes exploiting SIMs.

Magnetization relaxation in Ln salts has been a topic
of interest since the 1960s [43,74-76] being relevant
nowadays for mononuclear and polynuclear Ln-containing
complexes [77,78]. While the mechanisms of magnetization
relaxation in SIMs are at least partially understood, the
knowledge about relaxation in surface-deposited SIMs is a
nearly blank sheet. Yet, it is certainly a topic of high interest.

For a molecular complex to be a SIM, simply all
magnetization relaxation mechanisms have to be inefficient.

At the lowest temperatures of a few Kelvin the dominant
relaxation mechanism is usually hyperfine-mediated QTM,
which is governed by the nature of the involved Ln(IIl) ion
and its nuclear spin as well as by the ligand-field symmetry. At
slightly higher temperatures, spin—phonon coupling becomes
important. Spin—phonon coupling gives rise to a variety
of magnetization relaxation mechanisms. The associated
relaxation rates exhibit different dependencies on temperature
and magnetic field. In the following the different processes
relevant for magnetization relaxation in SIMs will be discussed
in detail. Their distinct dependence on temperature and
magnetic field, which allows to separate out which mechanism
is dominant in which regime, will be given.

3.1. Quantum tunneling of magnetization

Since its celebrated first observation [4, 79-82] magnetization
tunneling, most frequently termed as QTM, is omnipresent
in the field of SMMs and SIMs, and it almost has become a
nuisance because it limits the magnetization relaxation times at
the lowest temperatures. The introduction to QTM presented
here will be short and more details can be found in dedicated
reviews or book chapters [4, 83, 84].

In analogy to the example presented in [4], one can define
the Hamlltonlan of a two-state system {|| ), |1)} such as for
S =1/2and S, |}) = —1/2[1), 8. 11) = +1/2|1), with

-A
the matrix representation H = heor

For A ) The energy

eigenvalues of this Hamiltonian are Ex = ++/ A% + (hor)>.
For the imagination of the reader, the parameters A and hwr
can be identified with a longitudinal and a transverse Zeeman
splitting A = g,t,LBBZS‘Z and hor = g/LBBXS‘X. It is further
useful to call the quantity wr the tunnel frequency for reasons
detailed below. Obviously, H(A) exhibits an energy level
crossing for iy = 0 and an anticrossing, or avoided crossing,
for hwy # 0, with a minimum splitting of E, — E_ = 2hwy.
It can be shown that the time evolution obtained from the
Schrodinger equation is given by [y (7)) = x(¢) |) + y(?) |1).
The functions x (¢) and y(¢) depend on the initial conditions at
t = O as well as on whether the states are on resonance (A = 0)
or if they are far from resonance (A > hwr). Regarding the on
resonance case it is assumed that fiw7 is smaller than the width
of the energy levels. Far from resonance, x (1) = exp (—iwrt)
and y(#) = 0, meaning that the system always remains in
the || ) state. However, on resonance x(t) = cos (wrt) and
y(t) = =£sin (wrt), i.e. the system undergoes an oscillation
between the two states with angular frequency wy. This is
exactly the tunneling phenomenon, and it has the off-diagonal
terms in H atits origin. Note that these solutions only represent
examples for the initial condition ¢ |t = 0) = ||) but they
reflect nicely the basic mechanism of QTM. Importantly, this
simple yet fundamental treatment can be generalized to S >
1/2. Furthermore, the exact physical meaning of the quantities
A and hwr depends on the system under investigation. The
main point is that QTM is caused by small perturbations of any
kind leading to off-diagonal elements in the Hamiltonian.

As a second example a system possessing an easy-axis
magnetic anisotropy parallel to the z direction is given by
A= D[S2 S(S+1)/3]+gupS. B, +E(S2 S2) with D < 0
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Figure 3. Most relevant magnetization relaxation mechanisms
arising from spin—phonon coupling and their temperature
dependence. The shaded region denotes the phonon continuum.

and initially £ = 0. D and E are related to the previously
introduced Stevens coefficients by D = 3B} and E = Bj3. For
E = 0 its eigenstates are well described by the m; quantum
numbers, and the states with +m, and —m, are degenerate in the
absence of a magnetic field. If a weak perturbation |E| < | D]
is turned on, the eigenstates of H become admixtures of
different m; states. In the case of even number of electrons
in the 4f shell (‘non-Kramers ion’), this leads to a small
energy splitting and QTM when the Zeeman energy becomes
small compared to the tunnel splitting. Importantly, QTM is
a resonant effect, which becomes relevant only at or in the
vicinity of energy level crossings. This implies that for the
S = 1/2 system described before, there is only one resonance,
but there are more than one in a system with larger spin.

The simple examples showed that tunneling is strongly
dependent on the applied magnetic field. In SIMs it is
particularly efficient at or close to zero magnetic field,
which often gives rise to so-called butterfly type or waist-
restricted hysteresis loops. It should be further noted that the
hyperfine interaction as well as dipolar fields resulting from
the interaction with neighboring magnetic ions can introduce
off-diagonal terms and thus promote QTM. This can happen
when the splitting between two electronic states is smaller than
the maximum hyperfine splitting or the dipolar-field induced
splitting, respectively. If the number of electrons in the open
shell is odd (‘Kramers ion’), that is, for half-integer electronic
spin, there is strict double degeneracy of the electronic states
because of Kramers theorem. This should, in principle,
preclude QTM at uoH, = 0T , however, experiments on
LnPc, show that hyperfine interaction indeed promotes QTM
also in the case of an odd number of electrons [85, 86].
Finally, QTM between magnetic ground states is naturally
independent of temperature. However, relaxation becomes
temperature dependent when tunneling proceeds across excited
states [77, 81, 87].

3.2. Spin—phonon interaction

In contrast to the temperature-independent QTM, spin—phonon
interaction gives rise to a number of temperature dependent

relaxation mechanisms. The most relevant ones are sketched
in figure 3. The Zeeman-split Ising doublet ground states
between which the relaxation process takes place are denoted
as states |a) and |b). State |c) is an excited state which
is involved in the two-phonon relaxation mechanisms as
described below.

3.2.1. One-phonon (direct) process. In the so-called direct
process [43, 75, 88] the relaxation from |a) to |b) takes place
via the emission or absorption of a single phonon of the energy
difference Ephon = Ei — Ep with E; denoting the energy
of state |i). It was shown that the corresponding relaxation
rate, that is the inverse of the relaxation time, for Kramers
ions varies as Fgyx = 1/71 o< H coth(gupoH /2kgT) ~
H*T and for non-Kramers ions as Fgrng = 1/71
H3 coth(gupuoH /2ksT) ~ H*T,respectively. Here, g is the
ion’s g-factor, ug is the Bohr magneton, 7 is the temperature,
H is the applied field and kg is the Boltzmann constant. The
last approximations are valid if the Zeeman splitting is much
smaller than the thermal energy guguoH < 2kgT for both
Kramers and non-Kramers cases.

3.2.2. Two-phonon processes. The one-phonon process
described before is inefficient because the applicable phonon
density of states is small at the typical energies of ground
state Zeeman splittings. Therefore, two-phonon processes
involving phonons of much larger energy and larger densities
of states can be more efficient in certain temperature ranges.
The most important two-phonon processes are Orbach [89] and
Raman [43, 75] processes. In both cases a phonon of energy E
is absorbed and another phonon of energy Ej is emitted with the
energy difference E| — E, equal to the Zeeman splitting. The
two processes differ in the energies of the involved phonons:
While in the case of an Orbach process the phonons are below
the maximum phonon energy, the Raman process corresponds
to an absorption and reemission of virtual phonons above that
energy. Raman and Orbach processes can be distinguished
by their characteristic temperature dependence. In the case of
the Orbach process the magnetization relaxation rate depends
exponentially on the temperature:

Tom = 1/71 & Adexp[—A/(kgT)] for A > T. 4)

Here, A ~ E; ~ E; is the energy barrier that has to be
overcome to reverse the magnetization. The dependences of
Raman processes on temperature and magnetic field are given
by [43,75].

Tramk = 1/71 = R.T° +ay R.T"H?, (5a)

Tramnk = 1/71 = R, T'. (5b)

Here, R, and R/ are material specific parameters, and oy is a
constant. Equations (5a) and (5b) hold for Kramers ions and
non-Kramers ions, respectively (see section 2.3). Note that the
low-lying energy level structure has a crucial influence on the
relaxation dynamics, and if there are several energy levels close
to the ground state the exponent in the temperature dependence
of equations (5) can be significantly lower [90-92].
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Figure 4. Molecular structure of the TbPc, SIM. (Left) Oblique
view; (right) side view. Color code: terbium, turquoise; carbon,
gray; nitrogen, blue. Hydrogen atoms have been omitted.

4. SIMs in the bulk phase

It is important to achieve a deep understanding of the static and
dynamic magnetic properties of SIMs in the bulk crystalline
phase in order to understand the effect of the surface deposition.
In this Chapter some surface-relevant SIMs will be described.
As it will be discussed later, it is of interest to sublime SIMs in
ultrahigh vacuum (UHV). Therefore, this review highlights
the few species which have been shown to be sublimable.
Those can be considered as model systems useful to study
the on-surface magnetic properties of this interesting class of
magnetic systems. At the end of this Chapter, some additional
systems will be discussed which may be of future interest.

4.1. LnPc,

This class of mononuclear Ln(III) [LnPc,]” TBA* (with
TBA* = N (C4Hy)}) complexes is currently attracting a lot
of interest. Here, a Ln(III) ion is sandwiched (‘double decker’
structure) between two phthalocyaninato dianions (Pc) giving
rise to an eight-coordinated ligand field. The skew or twist
angle between the Pc sheets and thus the symmetry of the
ligand field depends crucially on the central metal ion. For the
earlier lanthanides it is close to 0°, while for the late lanthanides
itis close to 45° [93] in the latter case corresponding to a square
antiprism with D4y symmetry.

Most studies are focused on the Tb(III) congener because
of its particularly slow relaxation of magnetization. It has
been shown that [TbPc,] exists in three different oxidation
states as anion [TbPc,]~, cation [TbPc,]* and in neutral form
[TbPc,]° with the structure of the latter depicted in figure 4.
They exhibit small differences of their structures associated
with slightly different dynamic magnetic properties [94, 95].
For a fluorinated species even the doubly negatively charged
complex has been demonstrated [96]. It should be noted that
because of the ligand oxidation the neutral species hosts one
unpaired 7 electron delocalized over the two Pc ligands giving
rise to an organic radical with § = 1/2. Hence, counting also
the Tb electronic spin of J = 6 and the nuclear spin I = 3/2, the
Tchg molecule is actually a coupled three-spin system. It was
found from temperature dependent magnetic behavior of bulk
material, that in Tchg the J and § are antiferromagnetically
coupled [97, 98].

At very low temperatures (T ~ 2K) the magnetization
relaxation becomes slow enough such that a magnetic

3

o MR RN RS R A N
= C
20 -
E 10 :-
£ ] C
) ) C
07 -
£ .10 -
2 . L
) ] C
> -20 -

Figure 5. Magnetic hysteresis at 7 = 1.7 K of [TbPc,]~ TBA*
(with TBA" = N (C4Hy)}) diluted in the diamagnetic [YPc,]~
TBA*. Reprinted with permission from [103]. Copyright (2004)
American Chemical Society.

hysteresis can be detected in a SQUID magnetometer
measurement as shown in figure 5 for the anionic complex.
At these low temperatures the magnetization relaxation is
determined by QTM [99, 100] which has been demonstrated
to be driven by hyperfine interaction [85]. It was demonstrated
that in TbPc; the direct process (see section 3.2) dominates the
magnetization relaxation in the intermediate temperature range
of 12-20K [101]. At slightly elevated temperatures of ~30K
it was observed that the neutral complex exhibits a slower
magnetization relaxation than the anionic form [94] which
was later attributed to an increase of the ligand-field strength
because of the removal of one electron from the antibonding
highest occupied molecular orbital (HOMO) [102]. Above
that temperature, starting from ~50 K muon spin relaxation
and nuclear magnetic resonance experiments revealed that the
magnetization relaxation in TbPc; and TbPc) is thermally
activated, i.e. dominated by an Orbach process (see
section 3.2) with effective barriers of around 600 cm™".

The ligand-field parameters of the LnPc, series were
determined by Ishikawa et al by studying the paramagnetic
shifts in nuclear magnetic resonance spectra, taking into
account that the ligand-field parameters vary in a linear fashion
across the lanthanide series [37, 104]. This yielded the energy
spectra of the LnPc; series shown in figure 6 indicating that
the TbPc; anion has the largest separation between the ground
and first excited state of more than 400cm~'. The ground
state is characterized by the maximum projection |J;| = 6
corresponding to a strong easy-axis magnetic anisotropy.
These findings are in line with the very long magnetization
relaxation times of TbPc;. The energy level diagram also
nicely illustrates the very different magnetic properties of
different Ln(III) ions in the same ligand field (see section 2.2).
A very recent spectroscopic investigation [59] is in good
agreement with Ishikawa’s prediction for DyPc; however, it
put forward some corrections to the spectra of HoPc, and
TbPc; .

Because of the high symmetry of the TbPc, family, QTM
is very slow, and it should be completely suppressed in the
case of perfect Dsg symmetry. It was demonstrated that strong
changes occur in the appearance of the hysteresis openings
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Figure 6. Energy spectra of various LnPc;, TBA™*. Reprinted with
permission from [103]. Copyright (2004) American Chemical
Society.

of TbPc, upon heating and sublimation [105] which were
assigned to small structural diffences because of, e.g. a change
in packing of molecules.

Finally, it should be noted that related Ln double-
decker complexes were also obtained employing ligands
other than Pc, namely tetraphenylporphyrin [106] and
octaethylporphyrin [107].

4.2. Ln(trensal)

Another family of Ln SIMs which has been studied in
detail is the Ln(trensal) series, with Hstrensal = 2,2',2"-
tris(salicylideneimino)triethylamine. Its structure is shown in
figure 7.

Originally synthesized by Kanesato and Yokoyama [109],
thorough studies of the ligand field and 4f electronic structures
of the Ln ions across the Ln(trensal) series were undertaken
by Flanagan et al [108,110]. The Ln(trensal) systems are
excellent model systems because their 4f—4f transitions in
the visible to near infrared optical range are accessible in
contrast to the LnPc, double deckers described before. The
4f-Af optical transitions are a reliable direct probe of the
energy levels in ligand-field split multiplets of the Ln!
ions (see section 2.5), whereas in the LnPc, case the 4f-
4f transitions are masked by strong ligand absorption. The
lowest energy levels of Er(trensal) were recently characterized
by EPR and INS spectroscopy [58,111].  The recent
spectroscopic studies of the Ln(trensal) systems revealed
that upon functionalization in the remote part of the ligand
shell drastic changes in the magnetic properties can occur,
as depicted in figure 8. Yet the first coordination spheres
of the pristine and functionalized compounds are nearly
identical as can be seen from the structural overlays shown
in figure 8. Interestingly, both Er(trensal) and Dy(trensal)
exhibit slow relaxation of magnetization, while they are easy-
axis and easy-plane anisotropic systems, respectively. This
was attributed to barrier-independent (non-Orbach) relaxation
processes [58,111]. This is important since it suggests that

in such a case maximizing the magnetic anisotropy may not
lead to longer magnetization relaxation times. The drastic
changes in the SIM spectroscopic and magnetic properties
upon the functionalization in the ligand periphery suggest that
the deposition on strongly interacting surfaces will have a
similar effect.

Regarding the surface deposition, the Ln(trensal)
complexes have been shown to be sublimable (see section 5.5).
Their three-dimensional trigonal pyramidal structure, very
different from the TbPc, molecules, could allow for a stronger
decoupling from the surface, weaker magnetic exchange
coupling to ferromagnetic surfaces (see section 5.5) and for
non-flat molecular architectures.

4.3. Endohedral metallofullerenes

Ln-containing endohedral metallofullerenes [112,113] are a
special class of SIMs. Here, a small metal nitride molecule
including three trivalent metal atoms is encapsulated in a Cgg
cage. The Cgy cage carries a formal 6-fold negative charge,
and it is thus diamagnetic, while the nitride molecule has the
corresponding positive charge. Almost all Ln and some other,
e.g. 3d metals, can be incorporated. In contrast to all other
SIMs discussed in this review, endohedral metallofullerenes
are not synthesized via conventional coordination chemistry
approaches but by an arc discharge technique [113]. Slow
relaxation in the endohedral metallofullerenes DySc,N@Cg,
and HoSc;N@Cgy has been reported [114-117], with
magnetization relaxation times of DySc,N@Cyg, exceeding
several hours at 2 K. Since these molecules can be sublimed
in UHV [118, 119] they are appealing candidates for surface
studies alike the other two families of SIMs mentioned before.
The molecular structure obtained from density-functional
theory (DFT) geometry optimization is shown in figure 9
along with the magnetic hysteresis observed on DySc,N@Cgy.
Recent CASSCEF calculations suggested that the short Dy—N
bond gives rise to a very strong axial ligand field responsible
for the slow relaxation of magnetization [66, 120].

4.4. Other systems

It can be very enlightening to study SIMs of different nature
even if the structure leaves only little hope for the necessary
stability to sustain thermal sublimation. The polyoxometalate
SIM [ErW 903617~ was reported in 2008 [38, 121], and its Gd
congener has been used to demonstrate the possibility of Rabi
oscillations [14]. These are a first step towards full coherent
control or to achieve coherent manipulation of the electronic
angular momentum and, hence, identify it as a qubit candidate
besides the pioneering work on manipulatig the nuclear spin
in TbPc, [15].

A further series of Ln sandwich complexes partially
showing SIM behavior was demonstrated recently. Here,
the Ln ion is placed between pentamethylcyclopentadiene
(Cp*) and COT; rings [122-124]. Moreover, an attractive
class of SIMs exhibiting remarkable magnetic behavior are
the sandwich-type complexes including two cyclooctatetraene
dianions (COT) as ligands. While the Er (COT), complex was
reported in 2007 [125], the opening of a magnetic hysteresis
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(Right) Optical absorption spectrum of Er(trensal). Reprinted with permission from [108]. Copyright (2001) American Chemical Society.
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at remarkably high temperatures up to 10K was recently
demonstrated on structurally similar complexes [126—128]
crystallized with different counter ions.

5. SIMs on surfaces

There is currently a great deal of interest in the surface
deposition of organic molecules and biomolecules on surfaces.
These studies are both fundamentally and technologically
motivated by the observation that by using such complex
adsorbates new regimes and a great diversity of self-assembled
structures with interesting properties can be realized. This is
of relevance in many applications in information technology,
catalysis, sensing, etc. The surface studies of SIMs are

probably most related to information processing or storage
applications, but at this stage it is difficult to judge which other
opportunities may arise in the near future. In this Chapter, the
interactions relevant for the organization of SIMs on surfaces
will be discussed followed by a brief introduction of XAS,
x-ray magnetic circular dichroism (XMCD) and STM which
are relevant techniques for the study of SIMs on surfaces.
Then, the recent results gathered on surface-deposited SIMs
will be discussed.

5.1. Molecules, surfaces and interactions

In order to understand the behaviour of surface-deposited
molecules, it is important to look at the relevant interactions
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is shown as a gray wireframe. (Right) Temperature-dependent hysteresis loops of DySc,N@Cg recorded by SQUID magnetometry.
Adapted with permission from [114]. Copyright (2012) American Chemical Society.

Figure 10. (a) Relevant interactions. (b) TbPc, deposited on Au(l 1 1). (¢) TbPc, deposited on Cu(1 00), 200 x 200 nm?. Adapted with
permission from (b) [131] and (c¢) [132]. Copyright (2009, 2010) American Chemical Society.

that govern the adsorption of the molecules on the surface.
Since the adsorption of organic molecules on a surface
is an extended research topic by itself a comprehensive
discussion is beyond the scope of this work, and the
reader is referred to dedicated reviews, as e.g. [129,
130]. Importantly, interactions can be classified through the
way they are effective into intermolecular interactions and
molecule—substrate interactions, as depicted in figure 10(a).
Among the former ones are hydrogen bonding, metal-ligand
interactions and interactions between delocalized electron
systems. Molecule—substrate interactions comprise charge
transfer and covalent interaction, electric dipolar interactions
of static and dynamic (van der Waals) nature and mirror
charge(s). Adsorption can be weak (physisorption) or strong
(chemisorption). Further, energy barriers for surface migration
and rotation can play a role. The delicate balance of
these interactions determines whether, e.g. self-assembled
structures are formed or whether the molecules are adsorbed
one-by-one at random sites.

The substrate surface certainly plays an important role
as together with the molecular properties it determines
the adsorption energy, migration and rotation barriers of
molecules. Largely inert noble metal surfaces most often result
in low adsorption energy, low migration and rotational barriers
and in consequence the realization of the physisorption case.
This is in contrast to more reactive transition metal surfaces
which tend to form covalent bonds, or hybridize, with the

adsorbates. Strong hybridization or covalent bonding is most
often accompanied by the formation of sizeable migration
barriers such that the molecules become immobile on the
surface even at room temperature. Two example cases are
shown in figure 10 where TbPc, on Au(l11) are mobile
enough to form patches of ordered molecules (b) while on
Cu(1 00) the molecules are strongly attached to the surface (¢).
There are considerably less studies on semiconducting or
oxide surfaces. These surfaces have a more complex structure,
and they are more difficult to prepare and to image than
metal surfaces. Most of the ‘classical’ surface science studies
employing small inorganic or organic molecules are performed
on Si(100) [133-135] or TiO,(1 1 0) surfaces [136, 137].
The preparation of high-quality surfaces and the study of
molecular adsorbates in UHV requires a considerable pool of
equipment. Furthermore, the in-situ deposition of molecules
by sublimation in UHV puts strong constraints on the thermal
stability of the SIMs. Nevertheless, UHV surface preparation
and in-situ molecule deposition allow that the surface is free of
adsorbates prior to the molecule deposition which is of crucial
importance when studying the influence of molecule—surface
interactions which arise from the direct contact between
molecules and the substrate. These interactions can be weaker
or completely absent if (unwanted) adsorbates are present.
Wet chemistry type approaches have been demonstrated to be
very successful to anchor molecular magnetic clusters, SMMs
and SIMs to a variety of surfaces [21, 138—141]. This has
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proven to be very useful to decouple and isolate SMMs and
SIMs from the surface, however, achieving direct molecule—
surface electronic and magnetic coupling on purpose is rather
challenging with this approach, with some few exceptions
of rather inert surfaces such as Au(11 1) or highly oriented
pyrolitic graphite (HOPG). Electrospraying is a promising path
to the deposition of molecules while keeping the substrate
free from adsorbates. More details about structuring and
depositing molecules on surfaces can be found in dedicated
reviews [19, 20].

A topic that has been largely neglected in the field of
SIMs is that the structure of surface-adsorbed molecules does
not have to be identical to that in the bulk crystalline phase.
There are several reasons for that: Simply, there could be
damage to the molecules during the sublimation process,
or modifications can be induced by, e.g. charge transfer,
or distortions and symmetry breaking occur because of the
molecule—surface interactions quoted above. This issue should
not be neglected when dealing with surface-adsorbed SIMs,
and it will be discussed more specifically in the sections below
reviewing the experiments on the different adsorbed species
of SIMs. It is noted that the on-surface experimental study of
changes of the Ln electronic structure because of distortions
of the molecular structure or because of charge transfer and
molecule—surface hybridization is very challenging. The
study of the lowest electronic states by, e.g. inelastic STM
spectroscopy mentioned below or other applicable techniques
could deliver some insight here.

5.2. X-ray absorption spectroscopy

XAS and XMCD in the soft x-ray range (photon energies
of ~0.1-5keV) [142-144] are very powerful techniques to
investigate the magnetic properties of surface-deposited SIMs
and SMMs in the sub- and few monolayer range. XMCD is
element specific because the magnetic signal from the element
under consideration can be strongly increased with respect
to the unwanted background. The absorption cross sections
are very large in the soft x-ray range, resulting in ultrahigh
sensitivity of ca. 10'! molecules which is far superior to that
of a state-of-the-art SQUID magnetometer. Moreover, XAS in
total electron yield (TEY) mode is strongly surface sensitive
and sum rules [145, 146] allow for the extraction of absolute
values of spin and orbital magnetic moments.

XMCD refers to the difference between two absorption
spectra recorded with the opposite circular polarizations of the
incident x-rays, i.e. Ixmcp(hwpn) = L (hwpn) — I-(Awpy)
with hwy, = Ep, the photon energy. The strength and
sign of the integrated XMCD spectrum is proportional to the
projection of the element-specific magnetic moment M onto
the beam propagation direction S, i.e. [ IxmcpdEpy X M - S.
To rationalize the XMCD effect in the atomic-like lanthanides,
itis highly instructive to consider the simple case of the Yb(III)
ion depicted in figure 11 which was treated already in the early
days of XMCD by Goedkoop et al [147]. At the Yb M5 edge
an electron is excited from the filled 3ds/, core levels to the
open 4f shell. Hence, the initial and final configurations are
3d194f13 and 3d%4f', respectively, giving rise to *F7/, and
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Figure 11. Origin of the XMCD effect in Yb(III). Adapted figure
with permission from [147]. Copyright (1988) by the American
Physical Society.

’Ds), ground state multiplets. According to the selection
rules for electric dipole transitions, the transition between
these multiplets is allowed with J' — J = AJ = —1. By
choosing the circular polarizations of the light, the transitions
with either M’ — M AM = +1 or AM —1 are
selected. Here J, M and J’, M’ are the quantum numbers
of the total angular momentum and its z-projection of the
initial and final states, respectively. In the extreme case where
only the |M = —7/2) state is populated which can be realized
in a strong magnetic field at low temperatures, this leads to
the presence of absorption with AM = +1, i.e. for o*
circularly polarized light and the absence of absorption for
AM = —1, ie. o~ circularly polarized light as depicted
in figure 11 by red and blue boxes. The relationship of the
absorption cross sections for the different |M > states is given

1 J'
m —M

m refers to the polarization of the light where m = +1 for
the two circular polarizations. Since the magnetic moment of
the studied Ln(III) ion is determined by the occupation of |M)
states or their superpositions, it is mapped into the XMCD via
the polarization-dependent absorption.

Technically, the soft-XAS is often measured in TEY
mode, i.e. the current originating from electrons emitted from
the sample by the x-rays is measured. Since the electron
escape depth is only a few nanometers, the TEY signal is
strongly surface sensitive. Because of the very large absorption
cross sections in the soft x-ray regime the XAS and XMCD
experiments are usually performed in UHV environment. The
need for energy and polarization-tunable x-rays requires a
synchrotron as x-ray source. There are a few beam lines
specialized in high-field, low-temperature XMCD and which
are equipped with in-sifu surface-science tools necessary for

2
by the Wigner-3; symbol, ( /Jvz ) . The parameter
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the preparation of surface-adsorbed molecule samples. In
figure 12 the vacuum chamber system of the X-Treme beam
line [148] at the Swiss Light Source, Paul Scherrer Institut,
is shown. Besides a fast entry lock and a transfer chamber,
this system includes the measurement chamber, a preparation
chamber and an STM chamber. Similar equipment exists e.g.
at the IDO8 (now ID32) beam line at European Synchrotron
Radiation Facility (ESRF) and at the DEIMOS beam line at
SOLEIL [149].

5.3. Scanning tunneling microscopy

In an STM, an atomically sharp tip is scanned over the surface
of a sample while the tunnel current /; is measured. In most
cases, the so-called constant-current mode is used in which
the current is kept constant by adjusting the distance between
tip and the sample. The image is then formed from the
distance, i.e. tip height signal. Because of the exponential
dependence of the tunnel current on the tip sample distance
the technique is extremely sensitive with vertical resolution
below 1 A. Surface-adsorbed species such as single atoms and
molecules can be imaged. The tunnel current is given by

eV
I, {ps (Ep — eV +¢€) - p (Ep+¢€) [M[*de,  (6)

in which pg and p, are the sample and tip local densities of states
(LDOS), EF is the Fermi energy, V the applied voltage and M
is the tunnel matrix element. Hence the STM images have to
be interpreted as maps of electronic properties at the surface
which do not have to coincide with a geometric topography.
This is in particular important when imaging molecules which
often have a LDOS at the Fermi energy much lower than a
metal substrate, implying that the apparent height at which the
molecules appear is less than the geometric height.

Among the many aspects of STM, there is the possibility
of performing local spectroscopy of electronic, vibrational
and magnetic states. Also, the option of working with spin-
polarized tips is certainly of great interest when dealing with

SIMs on surfaces. It should also be mentioned here that
spin-excitation spectroscopy (or inelastic electron tunneling
spectroscopy) is able to reveal magnetic excitations of single
surface-adsorbed atoms and molecules [150-156] such that
this type of STM spectroscopy is certainly of high interest in
view of the Ln SIMs discussed in this review.

5.4. LnPc,

In this Chapter, the surface studies on TbPc, and relatives will
be reviewed, loosely grouped by the substrates used.

5.4.1. Nonmagnetic metal surfaces. In a first effort, this
SIM was deposited on a Cu(l11) surface using a printing
technique [157]. It was found that the molecules exhibited a
characteristic eight-lobed structure in STM images. Further,
the study suggested that the Tb 4f states could indeed be
accessed in STM experiments. In a subsequent x-ray study,
Stepanow et al demonstrated by x-ray linear dichroism and
XMCD that TbPc, SIMs are oriented and exhibit strong
magnetic anisotropy when deposited by thermal sublimation
as a submonolayer on a Cu(1 0 0) surface [132]. No hysteresis
was observed which was attributed to the temperature of the
experiment of 8 K and the data acquisition time of 20 min
for a magnetization curve. Katoh and colleagues reported
detailed STM addressing the Kondo effectin TbPc;, DyPc; and
YPc; on Au(l11) prepared by sublimation [131, 158, 159].
A mixture of the eight-lobed and four-lobed structures was
observed, and the four-lobed structure was attributed to TbPc
molecules, i.e. double-decker molecules which have lost
one of the two ligands. It was further reported that the
skew angle of the upper Pc ligand can be modified in STM
experiments on single TbPc, molecules on Au(l11) and
Ir(1 1 1) surfaces [160, 161]. STM results were complemented
by an XMCD study of a thick and a thin film of TbPc, on
Au(111) which showed the presence of a hysteresis in the
thick film, and in contrast only a small opening in the thin film
deposit [162] (see figure 13). The structural integrity of NdPc;
molecules on different metal surfaces was investigated [163]
revealing that on Au(l11) the majority of molecules are
of single-decker type or Pc only in agreement with the
observations in [131]. Further work on NdPc, deposited on
Cu(100) addressed explicitly the issue of whether the Nd
4f states can be accessed in STM experiments [164]. The
dynamic magnetic properties in the thin-film to bulk crossover
regime were recently investigated in a muon-spin relaxation
study [165], revealing that the magnetic fluctuations in the
films are much stronger than in the bulk, which was attributed
to differences in the packing of the molecules.

5.4.2. HOPG and graphene. An STM study of alkyl-
functionalized TbPc, molecules deposited on HOPG from
the liquid phase revealed the formation of self-assembled
checkerboard-type patches [166]. In a XMCD investigation,
submonolayers and multilayers of the neutral and anionic
TbPc, were investigated [167] with samples prepared from
solution. It was found that in the submonolayers both
anionic and neutral molecules adsorb flat on the HOPG
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Figure 13. Magnetic hysteresis of a thick (left double panel) and a thin (right) film of TbPc, on Au(1 1 1). Reproduced with permission
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surface. However, in the thick films the neutral molecules
still exhibit orientation while there is an increased disorder
for the anionic species. In a follow-up study Gonidec
et al [168] reported a small hysteresis opening in a thick film
as well as in a monolayer deposit. A similar experiment
was carried out by Klar et al using UHV sublimation
of the pristine neutral TbPc, confirming the appearance
of a hysteresis [169]. Moreover, the magnetic behavior
of DyPc, deposited on HOPG was studied, revealing a
small hysteresis and remanence at sub-Kelvin temperatures.
The magnetic properties of the protonated, neutral and
anionic forms of the octaethylporphyrin-Tb"" double decker
molecules deposited on HOPG were investigated [107],
and a derivative functionalized with long alkyl chains was
studied. In [170] pyrene-functionalized TbPc, molecules were
deposited on a graphene nanoconstriction. The signature of the
magnetic hysteresis could then be observed imprinted on the
magnetoconducitivity of the device.

5.4.3. Oxides, semiconductors, ferromagnetic and antiferro-
magnetic metal surfaces. Several studies have been address-
ing the magnetic coupling of TbPc, SIMs to ferromagnetic
metals using XAS and XMCD, with partially non-congruent
results. Lodi Rizzini et al demonstrated in a comprehensive
study that TbPc, shows magnetic exchange coupling to ferro-
magnetic substrates [171, 172] (see figure 14). The influence
of different orientations of the substrate remanent magnetiza-
tion (in-plane versus out-of-plane) was investigated as well as
the effect of Li doping. In a further study by Klar et al [173] the
coupling of TbPc; to aNi/Cu(1 0 0) appeared to be significantly
lower than in [171]. With the in-plane system Co/Cu(100)
a very weak antiferromagnetic coupling was found, in con-
trast to a later study by Malavolti et al [174]. In that study
TbPc, molecules were also deposited on the ferromagnetic ox-
ide Lag 3Sr97MnO3; (LSMO), and no exchange coupling could
be observed. It was found that the molecules adopt a stand-
ing geometry on LSMO, in contrast to the behaviour on noble
metal surfaces. Moreover, in [175] the possibility of exchange-
biasing SIMs was demonstrated using antiferromagnetic Mn
thin films. In a spin-polarized STM study, spin-split molecular

ligand orbitals could be observed directly on TbPc, deposited
on Coislands on Ir(111) [176].

Besides oxide surfaces, semiconductors are the least
explored substrates for the TbPc, molecules. A recent study
addresses this topic using a hydrogen-terminated Si(100)
surface [141]. The TbPc, molecules were functionalized with
long alkyl chains and chemically grafted onto the surface via
the thermal hydrosilylation process. It was found that the
molecules were partially oriented, and remarkably a hysteresis
opening larger than in the bulk phase was observed in the
monolayer.

5.4.4. Non-planar surfaces. Although the surfaces so far
dealt with were planar, the grafting of TbPc, molecules on
to the non-planar surfaces of (single-walled) CNTs represents
a directly related topic of as high interest. The underlying idea
is to use the current passing through the nanotube to read out
the magnetization state of single attached SIMs. An important
fundamental aspect was the noncovalent grafting of SMMs and
SIMs to the CNT's [177—179] such that isolated molecules can
be attached without reducing the conductivity of the CNT. In
consequence, pyrene-functionalized TbPc, grafted on CNTs
were used in a series of pioneering experiments demonstrating
the feasibility of a supramolecular spin valve [24] as well as
the observation of strong spin—phonon coupling between the
CNT and a single attached molecule [25].

5.5. Ln(trensal)

Out of the Ln(trensal) family [58,108,110,111], the
Er(trensal) SIM was studied in the monolayer regime on
Au(111) and Ni/Cu(100) surfaces [180]. The shape of
the ligand is tripodal with the three legs being linked at
an apex nitrogen atom as described in section 4.2. It has
been shown that Er(trensal) can be sublimed in UHV and
it was checked by x-ray photoelectron spectroscopy (XPS)
that it is deposited as a whole on the surfaces. On Au(111)
studies were performed on a multilayer and on a monolayer of
molecules, which turned out to exhibit rather similar behavior,
without a preferred orientation of the magnetic easy axis
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(see figure 15). On a ferromagnetic Ni thin film grown on
Cu(100), the situation is different because of the more reactive
surface leading to hybridization between the molecules and the
surface. This results in a preferential adsorption geometry of
molecules lying on their sides trying to maximize interaction
of their phenyl rings with the metal surface as suggested

from DFT calculations. The molecules were shown to couple
antiferromagnetically to the Ni substrate, as visible from
the element-specific magnetization of sample C plotted in
figure 15. The strength of the coupling is weak because of
the three-dimensional nature of the molecules and the resulting
long superexchange pathway as indicated by DFT calculations.
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Figure 16. STM images showing (A) islands of Dy;N@Cg,
endohedral metallofullerenes on Cu(1 1 1), (B) formation of
domains of differently oriented molecules and (C) same as (B), but
with color-coded domains. Reprinted figure with permission

from [118]. Copyright (2009) by the American Physical Society.

Up to now several studies have demonstrated that the
electronic and magnetic structure of Ln SIMs is extremely
sensitive to subtle perturbations of the ligand field [58, 94,
181]. The magnetic behaviour of Er (trensal) on Ni/Cu(1 00)
suggests that this plays a role also for surface-deposited
SIMs, however, the small structural distortions are difficult
to quantify experimentally in a submonolayer of surface-
adsorbed molecules.

5.6. Endohedral metallofullerenes

Endohedral metal-nitride fullerenes of type M, Scs_,N@Cg,
are thermally very stable and sublimable in UHV. Although
reports on single-ion magnetic species adsorbed on surfaces
are still lacking, experiments have been performed with the
structurally similar polynuclear species Dy;N@Cg, [118],
Dy,ScN@Cyg [182] and GdsN@Cgy [119]. Nevertheless,
work on these species will be briefly reviewed here because
their structure is closely related to the corresponding SIMs
such as DySc,N@Cg [114]. The icosahedral I;, symmetry of
the carbon cage and the rotational degrees of freedom of the
endohedral unit give rise to a complex adsorption behavior.
When deposited on Cu(1 1 1), the Dy;N@Cgy molecules form
differently ordered domains as shown in figure 16 [118]. It was
found by an x-ray photoelectron diffraction experiment that
the endohedral unit takes at least two different orientations,
with the N atom resting at the center position of the cage.
In Dy,ScN@Cg, molecules deposited on Rh(111) it was
demonstrated by XAS and XMCD that the Dy(III) ions which
carry the magnetic moment possess a net in-plane magnetic
anisotropy implying that the plane of the endohedral unit must
be parallel to the Rh(1 1 1) surface [182]. Most interestingly,

this compound exhibits a wide hysteresis with a sizeable
opening at zero field. It was observed that the molecules
in direct contact with the metal surface exhibit a smaller
hysteresis opening than those in the multilayer. Remarkably,
for the Gd3 N @Cyg species magnetic exchange coupling of the
endohedral unit through the Cgy cage to a thin ferromagnetic
Ni film [119] was observed.

6. Future prospects

While the theoretical foundations of the magnetism and
electronic structure of lanthanides have been laid decades
ago, these fundamental results appear under a new light
in the age of molecular spintronics. Surface deposition
experiments, elusive in earlier times, have become possible,
and physicists and chemists alike work closely together to
achieve challenging goals such as the creation of sophisticated
devices.

Looking back to the recent years many promising results
have been obtained in the relatively young field described
in this review. However, there are many challenges ahead:
Certainly on the wish list there are more sublimable molecules
with long magnetization relaxation times. Moreover,
sophisticated experimental and theoretical tools are needed
to advance the understanding of changes of the molecular
structure of surface-deposited species and the resulting
changes of ligand field and/or magnetic properties. As an
example the effect of the free conduction-band electrons
present in a metal substrate on the magnetization relaxation
times is not well understood yet and further work needs to be
devoted to that topic. Abundant questions remain: What is the
influence of oxide or semiconductor surfaces on the behavior
of SIMs? Can information be written to or read from a single
SIM on a planar surface on which SIMs could be organized,
going beyond the pioneering experiments on SIMs anchored
on carbon nanotubes? The interesting optical properties of
some SIMs have not been further addressed yet apart from the
study of absorption and luminescence spectra to understand
the energy levels of SIMs in very few studies up to now.
Studies reporting optical properties of surface-deposited SIMs
are scarce [183, 184].

There is a great deal of experience from surface and
interface studies of non-SIM mononuclear transition metal
complexes as well as from research on molecular spin valves
and tunneling devices. Hence the associated communities
should be more strongly linked with those studying surface-
adsorbed SIMs, or in other words, the different involved
fields should be brought closer together. If the relevant
interactions and mechanisms are understood, they can possibly
be controlled and harnessed in order to go beyond the current
approach of using SIMs as independent building blocks that
are put on surfaces, but rather the surface could be used to
enhance the properties of SIMs.
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