347 research outputs found

    The gradient of diffuse gamma-ray emission in the Galaxy

    Full text link
    We show that the well-known discrepancy between the radial dependence of the Galactic cosmic ray (CR) nucleon distribution, as inferred most recently from EGRET observations of diffuse gamma-rays above 100 MeV, and of the most likely CR source distribution (supernova remnants, pulsars) can be explained purely by PROPAGATION effects. Contrary to previous claims, we demonstrate that this is possible, if the dynamical coupling between the escaping CRs and thermal plasma is taken into account, and thus a self-consistent GALACTIC WIND calculation is carried out. Given a dependence of the CR source distribution on Galactocentric radius, r, our numerical wind solutions show that the CR outflow velocity, V(r,z) depends both on r, and on vertical distance, z, at reference level z_C. The latter is defined as the transition boundary from diffusion to advection dominated CR transport and is therefore also a function of r. In fact, the CR escape time averaged over particle energies decreases with increasing CR source strength. Such an increase is counteracted by a reduced average CR residence time in the gas disk. Therfore pronounced peaks in the radial source distribution result in mild radial gamma-ray gradients at GeV energies, as it has been observed. This effect is enhanced by anisotropic diffusion, assuming different radial and vertical diffusion coefficients. We have calculated 2D analytic solutions of the stationary diffusion-advection equation, including anisotropic diffusion, for a given CR source distribution and a realistic outflow velocity field V(r,z), inferred from self-consistent numerical Galactic Wind simulations. At TeV energies the gamma-rays from the sources are expected to dominate the observed "diffuse" flux from the disk. Its observation should allow an empirical test of the theory presented.Comment: 23 pages, 12 figures; accepted for publication in Astronomy and Astrophysics Main Journa

    Annihilation Emission from the Galactic Black Hole

    Full text link
    Both diffuse high energy gamma-rays and an extended electron-positron annihilation line emission have been observed in the Galactic Center (GC) region. Although X-ray observations indicate that the galactic black hole Sgr A∗^* is inactive now, we suggest that Sgr A∗^* can become active when a captured star is tidally disrupted and matter is accreted into the black hole. As a consequence the galactic black hole could be a powerful source of relativistic protons. We are able to explain the current observed diffuse gamma-rays and the very detailed 511 keV annihilation line of secondary positrons by p−pp-p collisions of such protons, with appropriate injection times and energy. Relativistic protons could have been injected into the ambient material if the black hole captured a 50M⊙_\odot star at several tens million years ago. An alternative possibility is that the black hole continues to capture stars with ∌\sim1M⊙_\odot every hundred thousand years. Secondary positrons produced by p−pp-p collisions at energies \ga 30 MeV are cooled down to thermal energies by Coulomb collisions, and annihilate in the warm neutral and ionized phases of the interstellar medium with temperatures about several eV, because the annihilation cross-section reaches its maximum at these temperatures. It takes about ten million years for the positrons to cool down to thermal temperatures so they can diffuse into a very large extended region around the Galactic center. A much more recent star capture may be also able to account for recent TeV observations within 10 pc of the galactic center as well as for the unidentified GeV gamma-ray sources found by EGRET at GC. The spectral difference between the GeV flux and the TeV flux could be explained naturally in this model as well.Comment: Accepted by ApJ on March 24, 200

    New Measurement of the Cosmic-Ray Positron Fraction from 5 to 15 GeV

    Get PDF
    We present a new measurement of the cosmic-ray positron fraction at energies between 5 and 15 GeV with the balloon-borne HEAT-pbar instrument in the spring of 2000. The data presented here are compatible with our previous measurements, obtained with a different instrument. The combined data from the three HEAT flights indicate a small positron flux of non-standard origin above 5 GeV. We compare the new measurement with earlier data obtained with the HEAT-e+- instrument, during the opposite epoch of the solar cycle, and conclude that our measurements do not support predictions of charge sign dependent solar modulation of the positron abundance at 5 GeV.Comment: accepted for publication in PR

    Hard X-ray emission from the galaxy cluster A3667

    Get PDF
    We report the results of a long BeppoSAX observation of Abell 3667, one of the most spectacular galaxy cluster in the southern sky. A clear detection of hard X-ray radiation up to ~ 35 keV is reported, while a hard excess above the thermal gas emission is present at a marginal level that should be considered as an upper limit to the presence of nonthermal radiation. The strong hard excesses reported by BeppoSAX in Coma and A2256 and the only marginal detection of nonthermal emission in A3667 can be explained in the framework of the inverse Compton model. We argue that the nonthermal X-ray detections in the PDS energy range are related to the radio index structure of halos and relics present in the observed clusters of galaxie.Comment: 15 pages, 1 figure, ApJL in pres

    The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation

    Get PDF
    Observations of cosmic-ray electrons and positrons have been made with a new balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach and the data analysis procedures, and we present results from this flight. The measurement has provided a new determination of the individual energy spectra of electrons and positrons from 5 GeV to about 50 GeV, and of the combined "all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3 +/- 0.2, respectively. We find that a contribution from primary sources to the positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed. To appear in May 10, 1998 issue of Ap.

    Massive protostars as gamma-ray sources

    Get PDF
    Massive protostars have associated bipolar outflows with velocities of hundreds of km s−1^{-1}. Such outflows can produce strong shocks when interact with the ambient medium leading to regions of non-thermal radio emission. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and can produce significant gamma-ray emission. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the non-thermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. We show that relativistic Bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be used to probe the physical conditions in star forming regions and particle acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Massive protostars as gamma-ray sources

    Get PDF
    Massive protostars have associated bipolar outflows with velocities of hundreds of km s−1^{-1}. Such outflows can produce strong shocks when interact with the ambient medium leading to regions of non-thermal radio emission. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and can produce significant gamma-ray emission. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the non-thermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. We show that relativistic Bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the {\it Fermi}{} satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Gamma-ray astronomy can be used to probe the physical conditions in star forming regions and particle acceleration processes in the complex environment of massive molecular clouds.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    Exploring the dark accelerator HESS J1745-303 with Fermi Large Area Telescope

    Full text link
    We present a detailed analysis of the gamma-ray emission from HESS J1745-303 with the data obtained by the Fermi Gamma-ray Space Telescope in the first ~29 months observation.The source can be clearly detected at the level of ~18-sigma and ~6-sigma in 1-20 GeV and 10-20 GeV respectively. Different from the results obtained by the Compton Gamma-ray Observatory, we do not find any evidence of variability. Most of emission in 10-20 GeV is found to coincide with the region C of HESS J1745-303. A simple power-law is sufficient to describe the GeV spectrum with a photon index of ~2.6. The power-law spectrum inferred in the GeV regime can be connected to that of a particular spatial component of HESS J1745-303 in 1-10 TeV without any spectral break. These properties impose independent constraints for understanding the nature of this "dark particle accelerator".Comment: 8 pages, 3 figures, 1 table, accepted for publication in Ap

    Cosmic-Ray Positrons: Are There Primary Sources?

    Get PDF
    Cosmic rays at the Earth include a secondary component originating in collisions of primary particles with the diffuse interstellar gas. The secondary cosmic rays are relatively rare but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, positrons and antiprotons. In addition, positrons and antiprotons may also come from unusual sources and possibly provide insight into new physics. For instance, the annihilation of heavy supersymmetric dark matter particles within the Galactic halo could lead to positrons or antiprotons with distinctive energy signatures. With the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have measured the abundances of positrons and electrons at energies between 1 and 50 GeV. The data suggest that indeed a small additional antimatter component may be present that cannot be explained by a purely secondary production mechanism. Here we describe the signature of the effect and discuss its possible origin.Comment: 15 pages, Latex, epsfig and aasms4 macros required, to appear in Astroparticle Physics (1999
    • 

    corecore