63 research outputs found

    Safety of intravenous thrombolysis for acute ischemic stroke in patients receiving antiplatelet therapy at stroke onset

    Get PDF
    <p><b>Background and Purpose:</b> Antiplatelets (APs) may increase the risk of symptomatic intracerebral hemorrhage (ICH) following intravenous thrombolysis after ischemic stroke.</p> <p><b>Methods:</b> We assessed the safety of thrombolysis under APs in 11 865 patients compliant with the European license criteria and recorded between 2002 and 2007 in the Safe Implementation of Treatments in Stroke (SITS) International Stroke Thrombolysis Register (SITS-ISTR). Outcome measures of univariable and multivariable analyses included symptomatic ICH (SICH) per SITS Monitoring Study (SITS-MOST [deterioration in National Institutes of Health Stroke Scale >= 4 plus ICH type 2 within 24 hours]), per European Cooperative Acute Stroke Study II (ECASS II [deterioration in National Institutes of Health Stroke Scale >= 4 plus any ICH]), functional outcome at 3 months and mortality.</p> <p><b>Results:</b> A total of 3782 (31.9%) patients had received 1 or 2 AP drugs at baseline: 3016 (25.4%) acetylsalicylic acid (ASA), 243 (2.0%) clopidogrel, 175 (1.5%) ASA and dipyridamole, 151 (1.3%) ASA and clopidogrel, and 197 (1.7%) others. Patients receiving APs were 5 years older and had more risk factors than AP nave patients. Incidences of SICH per SITS-MOST (ECASS II respectively) were as follows: 1.1% (4.1%) AP naive, 2.5% (6.2%) any AP, 2.5% (5.9%) ASA, 1.7% (4.2%) clopidogrel, 2.3% (5.9%) ASA and dipyridamole, and 4.1% (13.4%) ASA and clopidogrel. In multivariable analyses, the combination of ASA and clopidogrel was associated with increased risk for SICH per ECASS II (odds ratio, 2.11; 95% CI, 1.29 to 3.45; P = 0.003). However, we found no significant increase in the risk for mortality or poor functional outcome, irrespective of the AP subgroup or SICH definition.</p> <p><b>Conclusion:</b> The absolute excess of SICH of 1.4% (2.1%) in the pooled AP group is small compared with the benefit of thrombolysis seen in randomized trials. Although caution is warranted in patients receiving the combination of ASA and clopidogrel, AP treatment should not be considered a contraindication to thrombolysis.</p&gt

    What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury

    Get PDF
    Background Brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) are novel methods to evaluate cerebral oxygenation. We studied the response patterns of PbtO2, NIRS, and cerebral blood flow velocity (CBFV) to changes in arterial pressure (AP) and intracranial pressure (ICP). Methods Digital recordings of multimodal brain monitoring from 42 head-injured patients were retrospectively analysed. Response latencies and patterns of PbtO2, NIRS-derived parameters [tissue oxygenation index (TOI) and total haemoglobin index (THI)], and CBFV reactions to fluctuations of AP and ICP were studied. Results One hundred and twenty-one events were identified. In reaction to alterations of AP, ICP reacted first [4.3 s; inter-quartile range (IQR) −4.9 to 22.0 s, followed by NIRS-derived parameters and CBFV (10.9 s; IQR: −5.9 to 39.6 s, 12.1 s; IQR: −3.0 to 49.1 s, 14.7 s; IQR: −8.8 to 52.3 s for THI, CBFV, and TOI, respectively), with PbtO2 reacting last (39.6 s; IQR: 16.4 to 66.0 s). The differences in reaction time between NIRS parameters and PbtO2 were significant (P<0.001). Similarly when reactions to ICP changes were analysed, NIRS parameters preceded PbtO2 (7.1 s; IQR: −8.8 to 195.0 s, 18.1 s; IQR: −20.6 to 80.7 s, 22.9 s; IQR: 11.0 to 53.0 s for THI, TOI, and PbtO2, respectively). Two main patterns of responses to AP changes were identified. With preserved cerebrovascular reactivity, TOI and PbtO2 followed the direction of AP. With impaired cerebrovascular reactivity, TOI and PbtO2 decreased while AP and ICP increased. In 77% of events, the direction of TOI changes was concordant with PbtO2. Conclusions NIRS and transcranial Doppler signals reacted first to AP and ICP changes. The reaction of PbtO2 is delayed. The results imply that the analysed modalities monitor different stages of cerebral oxygenatio

    Exactly solvable Richardson–Gaudin models and their applications

    Get PDF
    3 pages, 1 table, 1 figure.--PACS nrs.: 21.60.Cs, 21.60.Fw, 02.30.Ik.--Arxiv pre-print available at: http://arxiv.org/abs/math-ph/0609022v1We first show that the quantum pairing problem can be mapped exactly on to a classical electrostatic problem in two dimensions and then use this analogy to obtain a pictorial representation of how superconductivity arises in a finite fermionic system. Specific application to the nuclei 114−116Sn suggests some new insight into the evolution of pairing correlations in a quantum system with few active particles. We also summarize other recent work on exactly solvable pairing models, including their applications in a wide variety of strongly correlated quantum systems.The work reported herein was supported in part by the US National Science Foundation under grant no PHY-0140036 and in part by the Spanish DGI under grant no BFM2003-05316-C02-02.Peer reviewe

    Analysis of slow wave oscillations in cerebral haemodynamics and metabolism following subarachnoid haemorrhage.

    Get PDF
    Aneurysmal subarachnoid haemorrhage (SAH) causes the greatest loss of productive life years of any form of stroke. Emerging concepts of pathophysiology highlight early abnormalities of microvascular function, including impaired autoregulation of cerebral blood flow and flow-metabolism coupling, as key causes of cerebral ischaemia and poor outcome. Near infrared spectroscopy (NIRS) is a non-invasive optical technique which may help identify cerebral microvascular dysfunction. The aim of this research is to investigate the status of flow-metabolism coupling by examining phase relationships between NIRS-derived concentrations of oxy-haemoglobin ([HbO2]), deoxy-haemoglobin ([HHb]) and cytochrome c oxidase oxidation ([oxCCO]). Eight sedated ventilated patients with SAH were investigated. A combined NIRS broadband and frequency domain spectroscopy system was used to measure [HbO2], [HHb] and [oxCCO] alongside other multimodal neuromonitoring. Wavelet analysis of phase relationships revealed antiphase [HbO2]-[oxCCO] and in-phase [HbO2]-[HHb] oscillations between 0.1Hz-0.01Hz consistent with compromised flow-metabolism coupling. NIRS derived variables might offer unique insights into microvascular and metabolic dysfunction following SAH, and in the future identify therapeutic windows or targets

    Dynamic cerebral autoregulation after intracerebral hemorrhage: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic cerebral autoregulation after intracerebral hemorrhage (ICH) remains poorly understood. We performed a case-control study to compare dynamic autoregulation between ICH patients and healthy controls.</p> <p>Methods</p> <p>Twenty-one patients (66 ± 15 years) with early (< 72 hours) lobar or basal ganglia ICH were prospectively studied and compared to twenty-three age-matched controls (65 ± 9 years). Continuous measures of mean flow velocity (MFV) in the middle cerebral artery and mean arterial blood pressure (MAP) were obtained over 5 min. Cerebrovascular resistance index (CVR<sub>i</sub>) was calculated as the ratio of MAP to MFV. Dynamic cerebral autoregulation was assessed using transfer function analysis of spontaneous MAP and MFV oscillations in the low (0.03-0.15 Hz) and high (0.15-0.5 Hz) frequency ranges.</p> <p>Results</p> <p>The ICH group demonstrated higher CVR<sub>i </sub>compared to controls (ipsilateral: 1.91 ± 1.01 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; contralateral: 2.01 ± 1.24 mmHg·s·cm<sup>-1</sup>, <it>p </it>= 0.04; vs. control: 1.42 ± 0.45 mmHg·s·cm<sup>-1</sup>). The ICH group had higher gains than controls in the low (ipsilateral: 1.33 ± 0.58%/mmHg, <it>p </it>= 0.0005; contralateral: 1.47 ± 0.98%/mmHg, <it>p </it>= 0.004; vs. control: 0.82 ± 0.30%/mmHg) and high (ipsilateral: 2.11 ± 1.31%/mmHg, <it>p </it>< 0.0001; contralateral: 2.14 ± 1.49%/mmHg, <it>p </it>< 0.0001; vs. control: 0.66 ± 0.26%/mmHg) frequency ranges. The ICH group also had higher coherence in the contralateral hemisphere than the control (ICH contralateral: 0.53 ± 0.38, <it>p </it>= 0.02; vs. control: 0.38 ± 0.15) in the high frequency range.</p> <p>Conclusions</p> <p>Patients with ICH had higher gains in a wide range of frequency ranges compared to controls. These findings suggest that dynamic cerebral autoregulation may be less effective in the early days after ICH. Further study is needed to determine the relationship between hematoma size and severity of autoregulation impairment.</p

    The Onconeural Antigen cdr2 Is a Novel APC/C Target that Acts in Mitosis to Regulate C-Myc Target Genes in Mammalian Tumor Cells

    Get PDF
    Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer
    corecore