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Abstract
We first show that the quantum pairing problem can be mapped exactly on to a classical
electrostatic problem in two dimensions and then use this analogy to obtain a pictorial
representation of how superconductivity arises in a finite fermionic system. Specific
application to the nuclei 114−116Sn suggests some new insight into the evolution of pairing
correlations in a quantum system with few active particles. We also summarize other recent
work on exactly solvable pairing models, including their applications in a wide variety of
strongly correlated quantum systems.

PACS numbers: 21.60.Cs, 21.60.Fw, 02.30.Ik

1. Introduction

In the early 1960s, Richardson [1] showed how to exactly
solve the pure pairing model (PM) including non-degenerate
single-particle orbits. Almost 40 years later, Dukelsky et al
[2] showed how to generalize Richardson’s solution, making
use of related work by Gaudin on spin models, so that the
resulting Richardson–Gaudin (R-G) models can now describe
the physics of a wide variety of strongly correlated many-body
quantum systems governed by pairing correlations. Many
interesting applications of these exactly solvable models
followed soon thereafter, to problems in nuclear physics,
condensed matter physics and atomic and molecular physics.
The methods have been applied both to fermion and boson
systems, invariably yielding useful insight into the properties
of the complex quantum systems that were modelled. A
review of the R-G models and their applications can be found
in [3].

More recently, several further extensions of the exactly
solvable R-G models have been proposed. Along one
interesting line, it has been shown how to generalize these
models to describe the interplay between an atomic system
(either fermionic or bosonic) that is governed by pairing
correlations and another bosonic degree of freedom [4].
Such models are of great interest in the context of efforts
to form molecular BEC from ultracold atomic gases and

corresponding efforts to study the crossover between BEC and
BCS in fermionic gases.

In this paper, the focus will be on one particular
application of exactly solvable R-G models of relevance
to nuclear structure. In particular, we will show how
Richardson’s exact solution of the pure PM leads to an
electrostatic analogy for any quantum pairing problem and
will then apply this electrostatic analogy to the problem
of pairing in finite nuclei. What will emerge is a pictorial
representation of how superconductivity emerges in a finite
quantum system with a small number of particles, such as the
atomic nucleus [5].

2. Richardson’s solution of the PM

The pure PM Hamiltonian for fermionic systems can be
written as

HP =

∑
l

εl N̂ l +
g

2

∑
ll ′

A†
l Al , (1)

where

N̂ l =

∑
m

a†
lmalm, A†

l =

∑
m

a†
lma†

lm̄ . (2)

Here alm creates either a boson or a fermion in single-
particle state lm and lm̄ denotes the time reverse of lm.
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Richardson considered the following ansatz for a system
of 2N particles subject to this Hamiltonian:

|9〉 =

N∏
i=1

B†
α|0〉, B†

α =

∑
l

1

2εl − eα

A†
l . (3)

He showed that these are indeed the exact seniority-zero
(i.e., fully-paired) eigenstates of the pairing Hamiltonian if the
pair energieseα satisfy the set of equations (�l = l + 1/2)

1 + 2g
∑

l

�l

2εl − eα

− 4g
∑

β( 6=α)

1

eβ − eα

= 0. (4)

The coupled equations (4), one for each of the N
collective pairs, are called the Richardson equations. There
are as many solutions to these equations as there are seniority-
zero eigenstates in the Hilbert space. Corresponding to
each eigenstate is an eigenenergy obtained by summing the
associated pair energies, namely:

E =

∑
α

eα. (5)

Included among these solutions is the ground state, the
state with lowest energy.

While the above discussion focused on the seniority-zero
states, it is possible to use the same general procedure to
generate all states of the system, including those with broken
pairs.

3. An electrostatic analogy for PMs

By making use of Richardson’s exact solution of the pure PM
Hamiltonian, it is possible to establish an exact electrostatic
analogy for the quantum pairing problem. To do so, consider
the energy functional

U = −
1

4g

∑
α

eα −

∑
j

� jε j

 −
1

2

∑
jα

� j ln |2ε j − eα|

−
1

2

∑
α 6=β

ln |eα − eβ | −
1

8

∑
i 6= j

�i� j ln |2εi − 2ε j |. (6)

It can be readily shown that when we differentiate U with
respect to the pair energies eα and equate to zero we recover
precisely the Richardson equations (4).

The physical meaning of U follows from the fact that
the Coulomb interaction between two point charges in two
dimensions is

v (r1, r2) = −q1q2 ln |r1 − r2| , (7)

where qi is the charge and ri is the position of particle i .
Thus, U is the energy functional for a classical two-

dimensional (2D) electrostatic system with the following
ingredients:

• There is a set of fixed charges, one for each single-particle
level, which are located at the positions 2εi and have
charges �i/2. We will call them orbitons.

• There are N free charges, one for each collective pair,
which are located at the positions eα and have positive
unit charge. We will call them pairons.

• There is a Coulomb interaction between all charges.
• There is a uniform electric field in the vertical direction

with intensity 1/4g.

The existence of this exact analogy suggests that we
might be able to use the positions that emerge for the pairons
in the classical problem to gain insight into the quantum
problem, hopefully an insight that was not otherwise evident.

Some other properties of the electrostatic problem
relevant to pairing in fermion systems are:

• Since the orbiton positions are given by the single-
particle energies, they lie on the vertical or real axis.

• The pair energies that emerge from the Richardson
equations are not necessarily real. They can either be
real or they can come in complex conjugate pairs. Thus,
a pairon must either lie on the vertical axis (real pair
energies) or be part of a mirror pair (complex pair
energies).

4. A new pictorial representation of nuclear
superconductivity

We now apply the electrostatic analogy to the problem of
identical nucleon pairing and in particular to the question of
how superconductivity arises in such systems. Because of the
limited number of active nucleons in a nucleus, it is extremely
difficult to see evidence for the transition to superconductivity
in such systems.

We will discuss what happens when we apply the
electrostatic analogy to the semi-magic nuclei 114−116Sn. The
calculations are done as a function of pairing strength g, using
single-particle energies extracted from experiment. Table 1
shows the corresponding information on the positions and
charges of the orbitons.

Figure 1 focuses on the nucleus 114Sn, showing the
positions of the pairons in the 2D plane as a function of
g. Since 114Sn has 14 valence neutrons, there are seven
pairons in the classical picture. In the limit of very weak
coupling, six neutrons fill the d5/2 orbit and eight fill the g7/2.
The corresponding electrostatic picture (figure 1(a)) has three
pairons close to the d5/2 orbiton and four close to the g7/2. In
the figure, we draw lines connecting each pairon to the one
that is closest to it. These lines make clear that at very weak
coupling the pairons organize themselves as artificial atoms
around their corresponding orbitons.

What happens as we increase the magnitude of g
(figures 1(b) and (c))? (The physical value is roughly
−0.092MeV.) As g increases, the pairons repel, causing the
atoms to expand. For g ≈ −0.04, a transition takes place from
two isolated atoms to a cluster, with all pairons connected to
one another. We claim that this geometrical transition from
atoms to clusters in the classical problem is a reflection of the
superconducting transition in the quantum problem.

We have also treated the nucleus 116Sn, with the same
set of single-particle energies as in 114Sn. For weak g, the
pairons distribute themselves into three atoms, surrounding
the d5/2, g7/2 and s1/2 orbitons. When g reaches roughly
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Table 1. Position and charges of the orbitons appropriate to a
pairing treatment of 114−116Sn.

Orbiton Position Charge

d5/2 0.0 −1.5
g7/2 0.44 −2.0
s1/2 3.80 −0.5
d3/2 4.40 −1.0
h11/2 5.60 −3.0
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Figure 1. 2D representation of the pairon positions in 114Sn for
three selected values of g. The orbitons are represented by open
circles; only the lowest two, the d5/2 and g7/2, are shown at the
positions dictated by table 1.

−0.06, the two lowest atoms—containing seven pairons—
merge into a cluster, as in 114Sn, with the eighth still separate.
When g grows to roughly −0.095 a second transition takes
place, with the eighth pairon merging into a larger cluster
with the other seven. From this point on, superconductivity
is complete. Thus the electrostatic analogy, which emerges
because of the existence of the exact Richardson solution,

suggests that full superconductivity develops in stages, as the
pairing interaction successively overcomes the single-particle
gaps that dominate in the weak-coupling limit.

5. Closing remarks

In this paper, we have described how the exact solvability of
the pure PM can be used to get a pictorial representation of the
emergence of superconductivity in a finite fermi system that
is governed by pairing correlations. Application of these ideas
to the nuclei 114−116Sn gave some interesting new insight into
how pairing correlations evolve in a system with so few active
particles.

As discussed in section 1, there have also been several
other applications of exactly solvable PMs reported recently.
These include applications in which the pure PM was used
and others in which the pairing Hamiltonian does not have
constant pairing strengths but is nevertheless exactly solvable.
There have also been several new directions recently pursued.
Along one line, exactly solvable PMs have been extended to
include the coupling of a paired system with another bosonic
degree of freedom, of possible relevance to atomic systems
coupled to molecular dimers. In a slightly different context,
in which the particle–hole rather than the pair realization of
SU(2) is used, the same models can be used to treat multiatom
systems coupled to a radiation field. Another direction under
current investigation concerns the further generalization of
such exactly solvable models to systems governed by other
algebraic correlation structures, not just those involving SU(2)
pairing. And we are optimistic that further generalization and
other interesting applications are still to follow.
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