2,596 research outputs found
Asymmetric dynamics and critical behavior in the Bak-Sneppen model
We investigate, using mean-field theory and simulation, the effect of
asymmetry on the critical behavior and probability density of Bak-Sneppen
models. Two kinds of anisotropy are investigated: (i) different numbers of
sites to the left and right of the central (minimum) site are updated and (ii)
sites to the left and right of the central site are renewed in different ways.
Of particular interest is the crossover from symmetric to asymmetric scaling
for weakly asymmetric dynamics, and the collapse of data with different numbers
of updated sites but the same degree of asymmetry. All non-symmetric rules
studied fall, independent of the degree of asymmetry, in the same universality
class. Conversely, symmetric variants reproduce the exponents of the original
model. Our results confirm the existence of two symmetry-based universality
classes for extremal dynamics.Comment: 14 pages, 8 figures, 1 tabl
Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 2: OTV concept definition
This portion of the Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Study, Volume 2, Book 2, summarizes the flight vehicle concept selection process and results. It presents an overview of OTV mission and system design requirements and describes the family of OTV recommended, the reasons for this recommendation, and the associated Phase C/D Program
Series expansion for a stochastic sandpile
Using operator algebra, we extend the series for the activity density in a
one-dimensional stochastic sandpile with fixed particle density p, the first
terms of which were obtained via perturbation theory [R. Dickman and R.
Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time;
the coefficients are polynomials in p. We devise an algorithm for evaluating
expectations of operator products and extend the series to O(t^{16}).
Constructing Pade approximants to a suitably transformed series, we obtain
predictions for the activity that compare well against simulations, in the
supercritical regime.Comment: Extended series and improved analysi
Recommended from our members
ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity.
It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity
Absorbing-state phase transitions: exact solutions of small systems
I derive precise results for absorbing-state phase transitions using exact
(numerically determined) quasistationary probability distributions for small
systems. Analysis of the contact process on rings of 23 or fewer sites yields
critical properties (control parameter, order-parameter ratios, and critical
exponents z and beta/nu_perp) with an accuracy of better than 0.1%; for the
exponent nu_perp the accuracy is about 0.5%. Good results are also obtained for
the pair contact process
Path-integral representation for a stochastic sandpile
We introduce an operator description for a stochastic sandpile model with a
conserved particle density, and develop a path-integral representation for its
evolution. The resulting (exact) expression for the effective action highlights
certain interesting features of the model, for example, that it is nominally
massless, and that the dynamics is via cooperative diffusion. Using the
path-integral formalism, we construct a diagrammatic perturbation theory,
yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure
Asymptotic behavior of the order parameter in a stochastic sandpile
We derive the first four terms in a series for the order paramater (the
stationary activity density rho) in the supercritical regime of a
one-dimensional stochastic sandpile; in the two-dimensional case the first
three terms are reported. We reorganize the pertubation theory for the model,
recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J.
Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties.
Since the process has a strictly conserved particle density p, the Fourier mode
N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a
random variable. Isolating this mode, we obtain a new effective action leading
to an expansion for rho in the parameter kappa = 1/(1+4p). This requires
enumeration and numerical evaluation of more than 200 000 diagrams, for which
task we develop a computational algorithm. Predictions derived from this series
are in good accord with simulation results. We also discuss the nature of
correlation functions and one-site reduced densities in the small-kappa
(large-p) limit.Comment: 18 pages, 5 figure
Absorbing-state phase transitions with extremal dynamics
Extremal dynamics represents a path to self-organized criticality in which
the order parameter is tuned to a value of zero. The order parameter is
associated with a phase transition to an absorbing state. Given a process that
exhibits a phase transition to an absorbing state, we define an ``extremal
absorbing" process, providing the link to the associated extremal
(nonabsorbing) process. Stationary properties of the latter correspond to those
at the absorbing-state phase transition in the former. Studying the absorbing
version of an extremal dynamics model allows to determine certain critical
exponents that are not otherwise accessible. In the case of the Bak-Sneppen
(BS) model, the absorbing version is closely related to the "-avalanche"
introduced by Paczuski, Maslov and Bak [Phys. Rev. E {\bf 53}, 414 (1996)], or,
in spreading simulations to the "BS branching process" also studied by these
authors. The corresponding nonextremal process belongs to the directed
percolation universality class. We revisit the absorbing BS model, obtaining
refined estimates for the threshold and critical exponents in one dimension. We
also study an extremal version of the usual contact process, using mean-field
theory and simulation. The extremal condition slows the spread of activity and
modifies the critical behavior radically, defining an ``extremal directed
percolation" universality class of absorbing-state phase transitions.
Asymmetric updating is a relevant perturbation for this class, even though it
is irrelevant for the corresponding nonextremal class.Comment: 24 pages, 11 figure
Detection thresholds of macaque otolith afferents
The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing
Diffusive epidemic process: theory and simulation
We study the continuous absorbing-state phase transition in the
one-dimensional diffusive epidemic process via mean-field theory and Monte
Carlo simulation. In this model, particles of two species (A and B) hop on a
lattice and undergo reactions B -> A and A + B -> 2B; the total particle number
is conserved. We formulate the model as a continuous-time Markov process
described by a master equation. A phase transition between the (absorbing)
B-free state and an active state is observed as the parameters (reaction and
diffusion rates, and total particle density) are varied. Mean-field theory
reveals a surprising, nonmonotonic dependence of the critical recovery rate on
the diffusion rate of B particles. A computational realization of the process
that is faithful to the transition rates defining the model is devised,
allowing for direct comparison with theory. Using the quasi-stationary
simulation method we determine the order parameter and the survival time in
systems of up to 4000 sites. Due to strong finite-size effects, the results
converge only for large system sizes. We find no evidence for a discontinuous
transition. Our results are consistent with the existence of three distinct
universality classes, depending on whether A particles diffusive more rapidly,
less rapidly, or at the same rate as B particles.Comment: 19 pages, 5 figure
- …