184 research outputs found

    On a switching control scheme for nonlinear systems with ill-defined relative degree

    Get PDF
    This paper discusses the applicability of a switching control scheme for a nonlinear system with ill-defined relative degree. The control scheme switches between exact and approximate input-output linearisation control laws. Unlike a linear system under a switching control scheme, the equilibria of a nonlinear system may change with the switching. It is pointed out that this is not sufficient to cause instability. When the region of the approximate linearisation control law is attractive to the exact zero dynamics, it is possible that the closed-loop system under the switching control scheme is still stable. The results in this paper shows that the switching control scheme proposed in Tomlin and Sastry (Systems Control Lett. 35(3) (1998) 145) is applicable for a wider class of nonlinear systems

    Multimode bolometer development for the PIXIE instrument

    Full text link
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30\sim30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.Comment: 10 pages, 7 figure

    Transitional intermittency in boundary layers subjected to pressure gradient

    Get PDF
    Results are reported from an extensive series of experiments on boundary layers in which the location of pressure gradient and transition onset could be varied almost independently, by judicious use of tunnel wall liners and transition-fixing devices. The experiments show that the transition zone is sensitive to the pressure gradient especially near onset, and can be significantly asymmetric; no universal similarity appears valid in general. Observed intermittency distributions cannot be explained on the basis of the hypothesis, often made, that the spot propagates at speeds proportional to the local free-stream velocity but is otherwise unaffected by the pressure gradient

    XRD TEM EELS Studies on Memory Device Structures

    Get PDF
    Over the past decade, numerous emerging memory technologies are being considered as contenders to displace either or both NAND flash and DRAM as scaling limitations of these conventional memories are perceived for applications in mobile devices. Some of these include Magnetic and Spin Transfer Torque Random Access Memory MRAM, STTRAM , Phase Change RAM PCRAM , Ferroelectric RAM and Resistive RAM memories. These technologies can be classified as relying on one of the movements atomic, ionic, electron charge or spin in nanoscale thin films comprising of a variety of materials. The literature shows about 50 elements of the periodic table being investigated for these memory applications owing to their unique physical and chemical properties. Engineering memory devices requires nanoscale characterizations of film stacks for their chemical compositions and crystalline nature in addition to electronic properties such as resistance, magnetization and polarization depending upon the principle involved. This paper focuses on how x ray diffraction XRD , transmission electron microscopy TEM and electron energy loss spectroscopy EELS techniques have been employed to obtain insight into engineering magnetic tunnel junctions MTJ and PCM device

    Magnetic Calorimeter Option for the Lynx X-Ray Microcalorimeter

    Get PDF
    One option for the detector technology to implement the Lynx x-ray microcalorimeter (LXM) focal plane arrays is the metallic magnetic calorimeter (MMC). Two-dimensional imaging arrays of MMCs measure the energy of x-ray photons by using a paramagnetic sensor to detect the temperature rise in a microfabricated x-ray absorber. While small arrays of MMCs have previously been demonstrated that have energy resolution better than the 3 eV requirement for LXM, we describe LXM prototype MMC arrays that have 55,800 x-ray pixels, thermally linked to 5688 sensors in hydra configurations, and that have sensor inductance increased to avoid signal loss from the stray inductance in the large-scale arrays when the detectors are read out with microwave superconducting quantum interference device multiplexers, and that use multilevel planarized superconducting wiring to provide low-inductance, low-crosstalk connections to each pixel. We describe the features of recently tested MMC prototype devices and simulations of expected performance in designs opti- mized for the three subarray types in LXM

    Multimode Bolometer Development for the PIXIE Instrument

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment

    Electrodynamics of the equatorial F-region ionosphere during pre-sunrise period

    Get PDF
    The electrodynamics of the pre-sunrise equatorial F-region is investigated using HF Doppler radar and digital ionosonde. The observations are limited to those days for which the radar probing frequency is below the ƒoF2 value. The ionosphere observation using HF Doppler radar exhibit interesting features during pre-sunrise period similar to the post sunset pre-reversal enhancement. The most striking feature observed during pre-sunrise period is the sudden downward excursion in the vertical drift around local sunrise followed by an upward turning. Pre-sunrise observations of vertical plasma drift and the sunrise downward excursion followed by an upward turning after the ground sunrise related to the zonal electric field at the equatorial F-region are the most significant results not reported earlier

    Prototype Magnetic Calorimeter Arrays with Buried Wiring for the Lynx X-Ray Microcalorimeter

    Get PDF
    Metallic magnetic calorimeter (MMC) technology is a leading contender for detectors for the Lynx X-ray Microcalorimeter, which is an imaging spectrometer consisting of an array of greater than 100,000 pixels. The fabrication of such large arrays presents a challenge when attempting to route the superconducting wiring from the pixels to the multiplexed readout. If the wiring is designed to be planar, then an aggressive, submicron scale wiring pitch has to be employed, which is technically challenging to design and fabricate on account of the requirements of low inductance, low cross-talk, high critical currents and high yield. An alternative way to achieve large scale, high density wiring is through the use of multiple buried metal layers, planarized by Chemical Mechanical Planarization. This approach is well-suited for connecting thousands of pixels on a large focal plane to readout chips, and also for fabricating sensor meander coils with narrow line widths, which helps in increasing the sensor inductance and thus alleviates stray inductance issues associated with the wiring in large size arrays. In this work we describe the fabrication of high sensor inductance MMC arrays implementing Lynx concepts and incorporating multiple layers of buried Nb wiring. The detector array is composed of three sub-arrays with pixels optimized to meet the different science driven performance requirements of Lynx. In two of the sub-arrays we adopt a thermal multiplexing scheme to read out pixels by coupling 25 absorbers to a single sensor through thermal links of varied thermal conductance. We demonstrate the successful fabrication of multi-absorber MMCs with fine pitch pixels in very large size arrays

    Human Multidrug-Resistant Salmonella Newport Infections, Wisconsin, 2003–2005

    Get PDF
    We conducted a retrospective study of Salmonella Newport infections among Wisconsin residents during 2003–2005. Multidrug resistance prevalence was substantially greater in Wisconsin than elsewhere in the United States. Persons with multidrug-resistant infections were more likely than persons with susceptible infections to report exposure to cattle, farms, and unpasteurized milk
    corecore