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Abstract

This paper discusses the applicability of a switching control scheme for a nonlinear

system with ill-defined relative degree. The control scheme switches between exact

and approximate input-output linearisation control laws. Unlike a linear system un-

der a switching control scheme, the equilibria of a nonlinear system may change

with the switching. It is pointed out that this is not sufficient to cause instability.

When the region of the approximate linearisation control law is attractive to the

exact zero dynamics, it is possible that the closed-loop system under the switching

control scheme is still stable. The results in this paper shows that the switching con-

trol scheme proposed in Tonlin and Sastry (Systems & Control Letters 35(3)(1998)

145-154) is applicable for a wider class of nonlinear systems.
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1 Introduction

Geometric nonlinear theory has become one of the most promising design tools for non-

linear systems in the past decade. However one of the main assumptions in the feedback

linearisation technique is that the nonlinear system under consideration should have well

defined relative degree. For those systems with ill-defined relative degree, the input-output

linearising law has singularities. This restricts the application of feedback linearisation tech-

nique in many engineering systems. One of the main approaches to this problem is to use

a switching control scheme [4], that is, a tracking control law that switches between an

approximate input-output linearisation control law when the state is close to the singu-

larities and an exact input-output linearisation control law when the state is far from the

singularities. However, in some cases, this scheme does not work well. For example, when

such a scheme is applied in the ball and beam example [2], the flip behaviour appears and

the beam cyclically oscillates between 0 and π [4]. This motivates research on the appli-

cability of this approach. On the other hand, when a switching control scheme is involved

in a nonlinear system, the whole system is a kind of hybrid system. The study of hybrid

systems is currently an active research area. It is interesting to understand the behaviour of

this hybrid system and investigate the applicability of the switching control scheme. In con-

trast to switching control for linear systems, the equilibria of nonlinear systems may change

under switching control schemes. The applicability of this switching linearisation approach

was assessed by considering the behaviour of the system’s zero dynamics at the switching

boundary [4]. This paper further investigates the applicability of the switching linearisation

control scheme. It is pointed out that the switching control scheme proposed by Tomlin and

Sastry [4] is applicable not only for nonlinear system having unchanged equilibria but also

for nonlinear system whose equilibria change under the switching control. It is shown by

two examples that the nonlinear systems can still be stable even though a change in the

equilibria between the exact and approximate internal dynamics occurs. The necessary con-

dition for the switching control scheme to be stable is that the region for the approximate

feedback linearisation is attractive to the closed-loop system under the exact linearisation

control law.
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2 Main Results

2.1 Switching control scheme

Consider a single input and single output affine nonlinear system





ẋ = f(x) + g(x)u

y = h(x)

(1)

where x ∈ Rn, u ∈ R and y ∈ R are the state vector, input and output respectively. f(x) and

g(x) are analytic function vector fields and h(x) is an analytic function. It is also supposed

that the controllability rank condition rank{g, adfg, . . . , adn−1
f g} = n holds for the system

(1). If xs is a point such that LgL
r−1
f h(x) = 0 where r is the relative degree of the nonlinear

system (1), then xs is called a singular point of the nonlinear system (1). A nonlinear system

with such a singular point is known as a nonlinear system with ill-defined relative degree.

Define the set of all singular points

Ns = {x ∈ Rn|LgLf r−1h(x) = 0} (2)

Let x0 be an equilibrium of the system (1), that is, f(x0) = 0. Without loss of generality, it

is assumed that x0 belongs to the set Ns and h(x0)=0 [4]. That is, the equilibrium point x0

is a singular point.

Based on the approximate linearisation method for nonlinear systems with ill-defined relative

degree [2], Tomlin and Sastry propose a switching control scheme where an approximate

linearisation control law is used when the state is close to the singular points and an exact

linearisation control law is employed when the state is far away from the singular points

[4]. This scheme has strengths from both approximate and exact linearisation techniques.

However, since the switching is involved, poor performance may result when this scheme is

applied to some nonlinear systems [4].

Let

M0 = {x ∈ Rn : LgL
r−1
f h(x) ≤ δ} (3)
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and

M = {x ∈ Rn : LgL
r−1
f h(x) > δ} (4)

where δ is a positive scalar. Then the closed-loop system under the proposed switching

control scheme is given by





ẋ = f ex(x, yD) = f(x) + g(x)uex(x, yD) x ∈ M

ẋ = f app(x, yD) = f(x) + g(x)uapp(x, yD) x ∈ M0

(5)

where uex is the exact linearisation control law; for example see [3], and uex is the approximate

linearisation control law in [2]. yD denotes the reference signal.

The internal dynamics can be divided into two cases: zero dynamics (yD = 0) and the driven

dynamics (yD 6= 0). For sake of simplicity, only the zero dynamics are considered first but

the driven dynamics can also be investigated by the same method [4] and will be illustrated

by an example. In what follows, the zero dynamics of the closed-loop system under the

exact and approximate linearisation control laws are referred to as exact zero dynamics and

approximate zero dynamics respectively. x0 is always the equilibrium of the approximate

zero dynamics when the approximate input-output linearisation control law is appropriately

designed. But due to the singularity, the exact zero dynamics are divided into the following

three cases [4]:

Case 1: Exact zero dynamics do not exist since there does not exist any input that will hold

the output and its derivatives at zero;

Case 2: Exact zero dynamics exist but x0 is not an equilibrium;

Case 3: Exact zero dynamics exist and x0 is an equilibrium.

Case 3 where equilibria remain unchanged under the switching has been carefully studied

in [4]. It is shown that the switching control scheme could work well in this case. When

the control scheme switching between the exact and approximate linearisation control laws

is designed and implemented on the systems belonging to the Case 1 and 2, a change

of equilibrium occurs. Since it is believed [4] that the change in the equilibrium results

in instability, one may conclude that a control scheme which switches between exact and

approximate control laws is not likely to work for these cases. This paper adds to the results
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in [4] and further investigates the applicability of the switching control scheme in Cases 1

and 2. We start from the following examples and show that a change of equilibrium is not

sufficient to cause instability.

2.2 Example 1: Case 1

Consider a nonlinear system (1) with

x = [x1, x2, x3]
T ; (6)

f(x) =




−x2

4x1

x2




; (7)

g(x) =




1

x2
1

0




; (8)

and

h(x) = x3. (9)

For this system we have

∂h

∂x
= (0, 0, 1) (10)

Lgh(x) = 0; Lfh(x) = x2 (11)

∂Lgh(x)

∂x
= (0, 1, 0) (12)

LgLfh(x) = x2
1; L2

fh(x) = 4x1 (13)

Thus the system has a relative degree 2 when x1 6= 0. It is singular at x1 = 0. The relative

degree of this nonlinear system is not well-defined.
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It follows from (13) that

∂L2
fh(x)

∂x
= (4, 0, 0) (14)

LgL
2
fh(x) = 4; L3

fh(x) = −4x2 (15)

According to the robust relative degree definition in [4], the system has robust relative degree

3 and thus the difference between the robust relative degree and the relative degree is 1.

It is also easy to check that the origin (0, 0, 0) is the unique equilibrium point for this system,

which is included in the set of singular points Ns={x ∈ R3 : x1 = 0}.

The exact input-output linearisation control law can be given by

uex(x) =
−4x1 + v

x2
1

(16)

where

v = ÿD + α2(ẏD − x2) + α1(yD − x3) (17)

Similar to [4], the approximate linearisation control law can be given by

uapp(x) = x2 + v/4 (18)

where

v = y
(3)
D + α3(ÿD − 4x1) + α2(ẏD − x2) + α1(yD − x3) (19)

Since LgLfh(x) = x2
1 and L2

fh(x) = 4x1, this is exactly Case 1 [4]. A control scheme switching

between (16) and (18) can work for the nonlinear system (1) with (7), (8) and (9) although

a change of equilibrium occurs. To show this, we choose (α1, α2) in (17) and (α1, α2, α3) in

(19) as (1, 2) and (1, 3, 3), respectively. The parameter δ is chosen as 0.1. That is, the exact

linearisation control law (16–17) and the approximate linearisation control law (18–19) work

in the regions

M = {x ∈ R3 : |x1| > 0.1} (20)
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and

M0 = {x ∈ R3 : |x1| ≤ 0.1} (21)

respectively.

For simplicity, let the tracking signal yD be zero and then the driven dynamics are the

same as the zero dynamics. Moreover, the desired state is the origin in this case, which

is a singular point. When the initial state is (2,−2, 2), the response under the switching

control is depicted in Fig. 1. It is shown that the control scheme which switches between

the exact and the approximate linearisation control laws (16) and (18) works very well for

this example.

To show that this switching control scheme can track reference signals whose magnitude and

derivatives are not small, the reference signal in the ball and beam example in [4] is adopted,

that is, yD = 1.9 sin(1.3t)+3. The simulation results in Fig. 2 show that the plant can track

this reference signal well under this switching scheme. The dash-dot and solid lines are the

histories of the reference signal and the system’s output respectively. The driven dynamics

is shown by the history of the state x1. It should be noted that the control scheme switches

between the exact and approximate control laws depending on the state x1, which keeps

going through the switching boundaries.

2.3 Example 2: Case 2

The system to be considered is given by (1) with h(x) given in (9) and

f(x) =




−x2 − x1

x1

x2




; (22)

g(x) =




0.05

x1

0




. (23)
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Following the same procedure as in Example 1, we have

LgLfh(x) = x1; L2
fh(x) = x1. (24)

Since LgLfh(x) and L2
fh(x) are the function of x1 with the same order, this is exactly Case

2 as discussed in [4].

Similarly, the exact and approximate linearisation control laws can be given by

uex(x) =
−x1 + v

x1

; (25)

v = ÿD + α2(ẏD − x2) + α1(yD − x3) (26)

and

uapp(x) = (x1 + x2 + v)/0.05; (27)

v = y
(3)
D + α3(ÿD − x1) + α2(ẏD − x2) + α1(yD − x3) (28)

respectively. It can be shown that

lim
x1→0

uex
0 (x) = −1, (29)

which is not equal to zero and less than infinity. The origin is not an equilibrium of the

exact zero dynamics.

The simulation result with the same design parameters and simulation conditions as in

Example 1 is plotted in Fig. 3. The simulation shows that such a switching control strategy

also works well for this system.

2.4 Discussion

Although the change in the equilibrium of the zero dynamics does not imply that the

closed-loop system under the switching control scheme is unstable, the behaviour of the

zero dynamics does play an important role in stability of the system under the switching

control scheme.
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Consider Example 1. Although the exact zero dynamics do not exist, the region M0 is

attractive to the “exact zero dynamics”, that is, the exact linearisation control law drives the

state to the approximate region M0. Once the state arrives in the region M0, the approximate

linearisation control law steers the state to the origin. This is the same as in Example 2. In

Example 2, the exact zero dynamics are given by

ẋ1 = x1 − 0.05. (30)

Thus the equilibrium of the exact zero dynamics is x1 = 0.05, which belongs to the set M0.

That is, the region M0 is attractive to the exact zero dynamics.

For a regulation problem, the necessary condition for the closed-loop nonlinear system under

the switching control scheme to be stable is that the approximate region M0 must be an

attractive region of the “exact zero dynamics”. This can be proved by contradiction. The

change in the equilibrium happens only for Cases 1 and 2. Thus Case 3 does not need to be

considered. First consider Case 2. When the region M0 is not attractive to the exact zero

dynamics, it implies the exact zero dynamics has at least one equilibrium in the region M+

or M−. The state starts from the region near around the equilibrium will be attracted to

the equilibrium and remain on this equilibrium under the exact input-output linearisation

control law. It is impossible to arrive at the desired point x0, which belongs to the set M0,

by the switching control scheme. Similarly, one can show the same result holds for Case 1

since the region M0 is not attractive to all the states under the exact linearisation control

law.

The stability analysis of a general tracking problem for a nonlinear system under the pro-

posed switching control scheme is much more complicated. However, the above condition

still holds since a regulation problem can be considered as a special case of the tracking

problem where the tracking reference is zero. We will discuss this in the next section using

the ball and beam example.

3 The ball and beam example revisited

The ball and beam example motivated the study of the applicability of the switching control

scheme [4]. Now we re-visit this example.
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The ball and beam example is described by





ẋ1 = x2

ẋ2 = B(x1x
2
4 −G sin x3)

ẋ3 = x4

ẋ4 = u

(31)

and the output equation is

y = x1 − r0 (32)

where x1, x2, x3 and x4 are the ball position, ball velocity, beam angle and beam velocity

respectively, and r0 is the offset constant. B and G are physical parameters associated with

the ball and beam.

It is easy to show that the exact input-output linearisation is not defined when x1x4 = 0.

Hence the set of the singular points is given by

Ns = {x ∈ R4 : x1x4 = 0} (33)

Following the switching control scheme in Section 2.1, the state space can be partitioned as

M0 = {x ∈ R4 : |x1x4| ≤ δ} (34)

M+ = {x ∈ R4 : x1x4 > δ} (35)

and

M− = {x ∈ R4 : x1x4 < −δ} (36)

where M = M+ ∪ M−. When the state enters the region M0, the approximate feedback

linearisation control law is employed and when the state is outside the region M0, the exact

feedback linearisation control law is used. As shown by [4], although the control scheme

which switches between the exact and approximate linearisation control laws is stable, the

driven dynamics cause the beam to continuously flip upside down and back again (see Figure
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4 which is reproduced from Figure 2 in [4] for the convenience of the reader). The ball and

beam plant belongs to Case 2.

This paper shows that the flip behaviour in the ball and beam example is mainly due to its

unstable zero dynamics rather than the switching control scheme. In fact, as shown in [4],

the zero dynamics under the exact linearisation control law are one dimensional

ẋ4 = G cos x3/2r0 where r0x
2
4 = G sin x3, (37)

which is shown in Figure 4. As shown in Figure 4, x1 is far from zero in the simulation where

yD = 1.9 sin(1.3t) + 3. The singularities are due to the state x4 going through zero. The set

M0 is shown in Figure 5 in the x3 − x4 state-plane.

The flip behaviour can be explained as follows: When the reference yD is tracked, all the

states vary due to the internal driven dynamics. In the beginning, the state x1 is small,

and x4 is within the set M0. According to the switching control scheme, the ball and beam

example is now controlled by the approximate linearisation control law [2]. Since (r0, 0, 0, 0)

is one of the two equilibria under the approximate linearisation control law, x3 varies around

0 due to the driven internal dynamics. It should be noted that the switching boundary for

x4 depends on the magnitude of x1. When x1 increases such that the magnitude of x4 is

larger than δ/|x1|, the system enters the region M+ or M−. This happens at about 10

seconds in Figure 4. The controller is switched to the exact feedback linearisation control

law and the exact zero dynamics appear. As shown in Figure 5, the exact zero dynamics

drive x3 from 0 to π. As x3 increases from π/2 to π, x4 decreases. Once the magnitude

of x4 is less than δ/|x1|, the controller is switched to the approximate linearisation control

law. Since (r0, 0, π, 0) is another equilibrium under the approximate control law, the system

moves around this equilibrium and x3 varies around π due to the driven internal dynamics.

This is shown in Figure 4 between 12–25 seconds. Again once the magnitude of x4 is larger

than δ/|x1| as |x1| increases, the exact linearisation control law is employed and the state

is driven from π to 0. Then the above process is repeated. This is why the beam oscillates

between x3 = 0 and x3 = π.

In other words, the control scheme for the ball and beam example switches between a stable

closed-loop system (when the state is in M0) and an unstable closed-loop system (when the

state is in M+ or M−). If the ball and beam system is written in the format of (5), it is

clearly seen that ẋ = f ex(x, yD) is unstable and ẋ = f app(x, yD) is stable. To investigate the
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applicability of the switching control scheme for such a nonlinear system, first one should

design a stabilising exact linearisation control law. For a nonlinear system with unstable

zero dynamics as the ball and beam example, Devasia-Chen-Paden’s nonlinear inversion

technique [1] may be used to design such a control.

4 Conclusions

This paper considers and adds to the work of Tomlin and Sastry [4]. It further investi-

gates the applicability of the switching control scheme proposed in [4] for nonlinear systems

with ill-defined relative degree. It is shown that the switching control scheme is applicable

not only for nonlinear systems with unchanged equilibria under the switching but also for

nonlinear systems whose equilibria change. Therefore the switching feedback linearisation

control scheme can be applied not only to Case 3 but also to Cases 1 and 2 in [4]. The results

in this paper significantly extends the application range of this method. It is also pointed

out that a necessary condition for the switching control scheme being applicable is that the

region of approximate linearisation control laws is attractive to the exact zero dynamics.
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Fig. 4. Tracking performance of the ball and beam system under the switching control law, repro-

duced from Figure 2 in [4]
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