20 research outputs found

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW.

    Get PDF
    The CheA kinase is a central protein in the signal transduction network that controls chemotaxis in Escherichia coli. CheA receives information from a transmembrane receptor (e.g., Tar) and CheW proteins and relays it to the CheB and CheY proteins. The biochemical activities of CheA proteins truncated at various distances from the carboxy terminus were examined. The carboxy-terminal portion of CheA regulates autophosphorylation in response to environmental signals transmitted through Tar and CheW. The central portion of CheA is required for autophosphorylation and is also presumably involved in dimer formation. The amino-terminal portion of CheA was previously shown to contain the site of autophosphorylation and to be able to transfer the phosphoryl group to CheB and CheY. These studies further delineate three functional domains of the CheA protein

    Particulate methane monooxygenase genes in methanotrophs.

    Get PDF
    A 45-kDa membrane polypeptide that is associated with activity of the particulate methane monooxygenase (pMMO) has been purified from three methanotrophic bacteria, and the N-terminal amino acid sequence was found to be identical in 17 of 20 positions for all three polypeptides and identical in 14 of 20 positions for the N terminus of AmoB, the 43-kDa subunit of ammonia monooxygenase. DNA from a variety of methanotrophs was screened with two probes, an oligonucleotide designed from the N-terminal sequence of the 45-kDa polypeptide from Methylococcus capsulatus Bath and an internal fragment of amoA, which encodes the 27-kDa subunit of ammonia monooxygenase. In most cases, two hybridizing fragments were identified with each probe. Three overlapping DNA fragments containing one of the copies of the gene encoding the 45-kDa pMMO polypeptide (pmoB) were cloned from Methylococcus capsulatus Bath. A 2.1-kb region was sequenced and found to contain both pmoB and a second gene, pmoA. The predicted amino acid sequences of these genes revealed high identity with those of the gene products of amoB and amoA, respectively. Further hybridization experiments with DNA from Methylococcus capsulatus Bath and Methylobacter albus BG8 confirmed the presence of two copies of pmoB in both strains. These results suggest that the 45- and 27-kDa pMMO-associated polypeptides of methanotrophs are subunits of the pMMO and are present in duplicate gene copies in methanotrophs

    Construction and Characterization of Mutations at Codon 751 of the Escherichia coli gyrB Gene That Confer Resistance to the Antimicrobial Peptide Microcin B17 and Alter the Activity of DNA Gyrase

    No full text
    Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751 was deleted or replaced by other amino acids. These mutants exhibit altered DNA gyrase activity and different levels of resistance to microcin B17

    Discovery of a widely distributed toxin biosynthetic gene cluster

    No full text
    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes
    corecore